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1. Introduction

1.1. Arborescences. Let Γ = (V,E,wt) be an edge-weighted quiver—that is, a directed multigraph with
a function on the edges wt ∶ E → R, where R is some ring. We usually abbreviate “edge-weighted” to
“weighted,” and instead of saying “quiver” or “directed multigraph” we usually say “graph”—any instance
in which we wish to consider only directed or only simple graphs will be explicitly noted. We consider the
weights of the edges of G to be indeterminates, treating the weight wt(e) of an edge e as a variable; let the
set of such variables be denoted wt(E). We denote the set of outgoing edges of a vertex v by Ei(v), and
the set of ingoing edges of v by Et(v) (here i and t stand for initial and terminal, respectively). We denote
the initial vertex of an edge e by ei and terminal vertex of e by et. Via abuse of notation, we will sometimes
make the statement e = (v,w), which means ei = v and et = w. However, when Γ is not necessarily simple,
there may be more than one edge satisfying these properties, so this statement is not actually a statement
of equality.

Definition 1.1. An arborescence T of Γ rooted at v ∈ V is a spanning tree directed towards v. That is, for
all vertices w, there exists a directed path from w to v through T . 1 We denote the set of arborescences of Γ
rooted at vertex v by Tv(Γ). The weight of an arborescence wt(T ) is the product of the weights of its edges:

wt(T ) =∏
e∈T

wt(e)

We denote by Av(Γ) the sum of the weights of all arborescences of Γ rooted at v:

Av(Γ) = ∑
T ∈Tv(Γ)

wt(T )

Av(Γ) is either zero or a homogeneous polynomial of degree ∣V ∣ − 1 in the edge weights of G.

1.2. The Laplacian Matrix and the Matrix Tree Theorem. The Matrix Tree Theorem, also known
as Kirchoff’s Theorem, yields a way of computing Av(Γ) through the Laplacian matrix of Γ.

Definition 1.2. The Laplacian matrix L(Γ) of a graph Γ is the difference of the weighted degree matrix D
and the weighted adjacency matrix A of Γ:

L(Γ) =D(Γ) −A(Γ)

Here, the weighted degree matrix is the diagonal matrix whose i-th entry is

dii = ∑
e∈Ei(v)

wt(e)

, and the weighted adjacency matrix has entries defined by

aij = ∑
e=(vi,vj)

wt(e)
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1Most other authors define an arborescence rooted at v to be a spanning tree directed away from v, so that v is the unique

source rather than the unique sink. Our convention is consistent with the study of R-systems.
1



Again, since we will always be working with weighted graphs in this paper, we will usually drop the word
“weighted” when talking about the Laplacian matrix. Note the ordering convention of the definition of the
Laplacian: when we label the vertices of Γ as v1, v2, . . . , we will always assume that v1 corresponds to the
first row and column of L(Γ), that v2 corresponds to the second row and column of L(Γ), and so on.

Theorem 1.3. (Matrix Tree Theorem) The sum of the weights of arborescences rooted at vi is equal to the
the minor of L(Γ) obtained by removing the i-th row and column:

Avi(Γ) = detLi
i(Γ)

1.3. Covering graphs.

Definition 1.4. A k-fold cover of Γ = (V,E) is a graph γ̃ = (Ṽ , Ẽ) that is a k-fold covering space of G in
the topological sense that preserves edge weight. More concretely, there exists a projection map π ∶ Γ̃ → Γ
such that

(1) π maps vertices to vertices and edges to edges;

(2) ∣π−1(v)∣ = ∣π−1(e)∣ = k for all v ∈ V, e ∈ E;

(3) For all ẽ ∈ Ẽ, we have wt(ẽ) = wt(π(ẽ));

(4) Local homeomorphism: restriction of π to a neighborhood of ṽ ∈ Ṽ is a graph isomorphism onto the
neighborhood of π(ṽ) ∈ V . Here we mean “neighborhood” in the graph-theoretical sense, i.e. the
neighborhood of v is the set Ei(v) union the set of vertices adjacent to v.

1.4. An invariant ratio. Motivating our research is a corollary of Galashin and Pylavskyy, which they
discovered in their study of R-systems.

Proposition 1.5. (Corollary of Galashin–Pylyavskyy, Theorem 2.3 in [GP17]) Let Γ be a simple and strongly
connected graph, and let Γ̃ be any covering graph of Γ. Let v be a vertex of Γ. Then the ratio

Aṽ(Γ̃)
Av(Γ)

is a well-defined as a rational function in the edge weights of Γ, and furthermore this ratio is independent of
the choice of vertex v and its lift ṽ.

Proof. Since Γ is strongly connected, there is at least one arborescence rooted at v, so Av(Γ) is not the zero
polynomial, showing well-definition.

To show that this ratio is independent of our choice of vertex, we define two sets of parameters X = (Xv)v∈V
and X ′ = (X ′v)v∈V that satisfy

∑
(u,v)∈E

wt(u, v) Xv

Xu′
= ∑
(v,w)∈E

wt(v,w)Xw

X ′v
.(1)

We wish to find solutions to this relation when X is the all-ones vector. We rewrite (1) as

∑
(u,v)∈E

wt(u, v)Xv

Xu

Xu

Xu′
= ∑
(v,w)∈E

wt(v,w)Xw

Xv

Xv

Xv′
.
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To solve, we treat the above equation as a linear system in the variables (Xv

X′v
)
v∈V

. The matrix M of this
system is

mvu =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑(v,w)∈E wt(v,w)Xw

Xv
u = v

−wt(u, v)Xv

Xu
(u, v) ∈ E

0 else

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑(v,w)∈E wt(v,w) u = v
−wt(u, v) (u, v) ∈ E
0 else

This is the transpose of the weighted Laplacian matrix L(Γ) of Γ, albeit with modified edge weights: if
e = (u, v), then the new weight of e is wt(u, v)Xv

Xu
. The Matrix Tree Theorem implies that L has rank ∣V ∣−1,

since the minor obtained by removing any row and column corresponding to a vertex v is nonzero, since
Av(Γ) ≠ 0 for Γ strongly connected. Thus, M has a one-dimensional kernel as well, so there is a unique
solution up to scaling for M (X

X

′) = 0. We may check that Xv

X′v
= Av(Γ) is such a solution—the inner product

of row v of M with the vector (Av(Γ))v∈Γ is
Av(Γ) ∑

w≠v
wt(v,w) − ∑

u≠v
Au(Γ)wt(u, v)

However, given a pair (T, e) consisting of an arborescence T rooted at u and an edge e = (u, v), we may
obtain a pair (φ(T ), φ(e)) consisting of an arborescence φ(T ) rooted at v and an edge φ(e) = (u, v). φ(T )
is obtained by appending e to T , and then removing the unique outgoing edge φ(e) of v in T . φ is invertible,
and we have wt(T )wt(e) = wt(T ′)wt(e′), so in expression (2) above the positive and negative terms cancel,
showing that the expression is indeed zero, as desired. Thus, Xv

X′v
= Av(Γ) is the unique solution up to scaling

to the system (1).

However, equation (1) is defined locally—the solutions to Xv and X ′v is depend only on neighborhood of v.
Because any cover of a graph is locally homeomorphic to the original graph, any solution to (1) will hold
both for vertices in the original graph and for its lifts in the cover. Therefore, choose one representative
ṽ ∈ Ṽ for each vertex v ∈ V . Then we have two solutions to (1)—one from repeating the previous solution,
and the other from using the local homeomorphism property:

Xṽ

X ′ṽ
= Aṽ(Γ̃);

Xṽ

X ′ṽ
= Av(Γ)

But we already know that any solution to (1) is unique up to scaling. Therefore, (Aṽ(Γ̃))v∈V = λ(Av(Γ))v∈V
for some scalar λ, so that

Aṽ(Γ̃)
Av(Γ)

= λ(2)

for any v ∈ V , as desired.

Similarly, the local homeomorphism property also makes it clear that it does not matter which lift ṽ of v we
use. ∎

Galashin and Pylyavskyy are concerned with the unique solution to the system (1), which they call the
R-system of the graph Γ. They worked exclusively over strongly connected simple graphs, but in Section 4
we will extend Proposition 1.5 to arbitrary multigraphs.

Given the existence of this invariant ratio, we ask if there exists a nice explicit formula that computes it.
This is our primary research question for this paper. While Galashin-Pylyavskyy holds for arbitrary covering
graphs including non-regular covers, we will restrict ourselves to exploring special types of covers known as
derived graphs.
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1.5. Voltage graphs and derived graphs. In order to define a derived graph, we must first define the
notion of voltage:

Definition 1.6. A weighted G-voltage graph Γ = (V,E,wt, ν) is a weighted quiver with each edge e also
labeled by an element ν(e) of a finite group G. This labeling is called a voltage of G with respect to G. Note
that the voltage of an edge e is distinct from the weight of e.

Definition 1.7. Given a G-voltage graph Γ, we may construct an ∣H ∣-fold covering graph of G known as
the derived graph Γ̃ = (Ṽ , Ẽ,wt). The derived graph of a voltage graph is a graph with vertex set Ṽ = V ×H.
For each edge e = (v,w) in Γ with voltage g ∈ G, we add to G̃ the ∣H ∣ edges

{[v × x,w × (hx)] ∶ x ∈H}

to create the edge set Ẽ.

Example 1.8. Let H = Z/3Z = {1, h, h2}, and let G be the following H-volted graph, where edges labeled
(x, y) have edge weight x and voltage y:

1

23

(a, h)

(b,1)(d, h2)

(e,1)

(c, h2)

Then the derived graph G̃, with vertices (v, x) = vx and with edges labeled by weight, is
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d
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One might think that derived graphs are an overly special subset of general covering graphs, but they turn
out to be surprisingly general.

Definition 1.9. Given a graph Γ and a covering graph Γ̃, the deck group Aut(π) of Γ̃ is the group of
automorphisms on Γ̃ that preserve the fibers of the projection map π.

Definition 1.10. A regular cover Γ̃, sometimes known as a Galois cover, of a graph Γ is a covering graph
whose deck group is transitive on each fiber π−1(v) for each v ∈ V .

Theorem 1.11. (Theorems 3 and 4 in [GT75]) Every regular cover Γ̃ of a graph Γ may be realized as a
derived cover of Γ with voltage assignments in Aut(π). Conversely, every derived graph is a regular cover.

The main focus of this paper is to explore the relationship between the arborescences of a voltage graph Γ
and the arborescences of its derived graph Γ̃, and thus explore this relationship for arbitrary regular covers.
Our goal is to give an explicit formula for the ratio described by Proposition 1.5. Specifically, we examine
how to express this ratio in terms of the determinant of a variant of the Laplacian matrix of Γ.

2. The voltage Laplacian

We wish to define a matrix similar to the Laplacian matrix that tracks all the relevant information in an
G-voltage graph. In order to do so in general, we need to extend our field of coefficients in order to codify
the data given by the voltage function ν. Following the language of Reiner and Tseng in [RT13]:

Definition 2.1. The reduced group algebra of a finite group G over a field F is the quotient

F [G] = F [G]
⟨∑g∈G h⟩

,

where F [G] is the group algebra of G over F . That is, we quotient the group algebra by the all-ones vector
with respect to the basis given by G.

For simplicity, in the remainder of this paper we take F = Q. In practice, we will always be dealing with
integers. Note that if G ≅ Z/2Z, then Q[G] ≅ Q, with the non-identity element of G identified with −1. For
this reason, we will sometimes refer to Z/2Z-voltage graphs as signed graphs, and the voltage of an edge of
such a graph as the sign of that edge. Similarly, if G ≅ Z/pZ, with p prime, then Q[G] ≅ Q(ζp), where ζp
is a primitive p-th root of unity and the generator h of G is identified with ζp. The fact that the reduced
group alebgra of prime cyclic G is actually a field extension over Q will be important later in giving us nice
formulas for the ratio of arborescences described in the introduction.

We now define a generalization of the Laplacian matrix that takes into account voltages:

Definition 2.2. The voltage adjacency matrix A (G) has entries given by
aij = ∑

e=(vi,vj)∈E
ν(e)wt(e),

where we consider ν(e) as an element of the reduced group algebra Q[G]. That is, the i, j-th entry consists
of sum of the volted weights of all edges going from the i-th vertex to the j-th vertex. The voltage Laplacian
matrix L (Γ) is defined as

L (Γ) =D(Γ) −A (Γ)

where D(Γ) is the (unvolted) weighted degree matrix as described in Definition 1.2.

Note that in the special case G ≅ {1} we have L (Γ) = L(Γ).

Since we consider the edge weights of Γ as indeterminates, we treat the entries of L (G) as elements of
Z[G][wt(E)] ⊂ Q[G][wt(E)]—that is, the polynomial ring of edge weights with coefficients in the group
algebra.
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Example 2.3. Let Γ the Z/3Z-voltage graph in Example 1.8. Under the identification Q[Z/3Z] ≅ Q(ζ3),
the voltage Laplacian of Γ is

L (Γ) =
⎡⎢⎢⎢⎢⎢⎣

a + b 0 0
0 c 0
0 0 d + e

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

ζ3a b 0
0 0 ζ23c
ζ23d e 0

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

(1 − ζ3)a + b −b 0
0 c −ζ23c
−ζ23d −e d + e

⎤⎥⎥⎥⎥⎥⎦

3. The determinant of the voltage Laplacian counts vector fields

Definition 3.1. A vector field γ of a directed graph Γ is a subgraph of Γ such that every vertex of Γ has
outdegree 1 in γ. Similarly to arborescences, we define the weight of a vector field wt(γ) ∶= ∏e∈γ wt(e) of a
vector field be the product of its edge weights, so that wt(γ) is a degree ∣V ∣ monomial with respect to the
edge weights of Γ.

The determinant of L (Γ) counts vector fields of Γ in the following way:

Theorem 3.2. Let G be an abelian group, and let Γ be an edge-weighted Γ-voltage quiver. Write C(γ) for
the set of cycles in a vector field γ (such cycles are necessarily disjoint), and let the voltage of a cycle c be
given by ν(c) =∏e∈c ν(e) ∈ Q[G][wt(E)]—this product is well-defined since G is abelian. Then

∑
γ⊆Γ

⎡⎢⎢⎢⎢⎣
wt(γ) ∏

c∈C(γ)
(1 − ν(c))

⎤⎥⎥⎥⎥⎦
= detL (Γ)

where the sum ranges over all vector fields γ of Γ.

The following special case of the above, with G = Z/2Z, will be useful later in our first proof of the ratio of
arborescences formula for signed graphs:

Corollary 3.3. Suppose that Γ is a Z/2Z-voltage graph, i.e. a signed graph. Define a negative vector field
γ of Γ to be a vector field such that every cycle c of γ has an odd number of negative edges, so that ν(c) = −1.
Denote the set of negative vector fields of G by N (Γ). Then

∑
γ∈N (Γ)

2#C(γ)wt(γ) = detL (Γ)

We present two proofs of Theorem 3.2: one original, as far as we are aware, and the other dating back to
Chaiken.

The first proof proceeds by deletion-contraction, and requires the following lemma in order to run smoothly:

Lemma 3.4. Let Γ be as in Theorem 3.2 with voltage function ν ∶ E → Q[G], let v be any vertex of Γ, and
let g ∈ G. We define a new voltage function νv,g given by

νv,g(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν(e) ∶ if e = (v, v)
gν(e) ∶ if e ∈ Ei(v), e ∉ Et(v)
g−1ν(e) ∶ if; e ∈ Et(v), e ∉ Ei(v)
ν(e) ∶ else

Then

(a) for any cycle c of Γ, we have ν(c) = νv,g(c); and

(b) the determinant of the voltage Laplacian of Γ with respect to the voltage ν is equal to the determinant of
the voltage Laplacian of Γ with respect to νv,g. That is,

detL (V,E,wt, ν) = detL (V,E,wt, νv,g)
6



Proof. (a) If c does not contain the vertex v, or if c is a loop at v, then the voltages of all edges in c remain
unchanged. Otherwise, c contains exactly one ingoing edge e of v and one outgoing edge f of v, so that

νv,h(c) =
ν(c)

ν(e)ν(f)
[gν(e)][g−1ν(f)]

= ν(c)

as desired.

(b) The matrix L (V,E,wt, ν) may be transformed into the matrix L (V,E,wt, νv,g) by multiplying the
row corresponding to v by h and multiplying the column corresponding to v by g−1, so the determinant
remains unchanged.

∎

This lemma will allow us some freedom to change the voltage of Γ as needed.

Proof. (First proof of Theorem 3.2). Denote the left-hand side of the theorem as

Ω(Γ) ∶= ∑
γ⊆Γ

⎡⎢⎢⎢⎢⎣
wt(γ) ∏

c∈C(γ)
(1 − ν(c))

⎤⎥⎥⎥⎥⎦

We proceed by deletion-contraction. Our base case will be when the only edges of Γ are loops. When this
happens, L (Γ) is diagonal, with

ℓii = ∑
e=(vi,vi)∈E

(1 − ν(e))wt(e).

Thus we have

detL (Γ) =
∣V ∣

∏
i=1

⎛
⎝ ∑
e=(vi,vi)∈E

[1 − ν(e)]wt(e)
⎞
⎠

If we expand the product above, each term will correspond to a unique combination of one loop per vertex
of Γ. But such combinations are precisely the vector fields of Γ, so we obtain

detL (Γ) = Ω(Γ)

For the inductive step, assume that there exists at least one edge e between distinct vertices, and assume that
the proposition holds for graphs with fewer non-loop edges than Γ. Using the lemma, we may change the
voltage of Γ so that e has voltage 1 without changing either Ω(Γ) or detL (Γ). Without loss of generality,
let v1 = ei and v2 = et.

If γ is a vector field of Γ, then γ either contains e or it does not. In the latter case, γ is also a vector field
of Γ/e. Clearly all such γ arise uniquely from a vector field of Γ/e. Therefore, there is a weight-preserving
bijection between the vector fields of Γ not containing e and the vector fields of Γ/e.

Otherwise, if e ∈ γ, then no other edge of the form (v1, vj) is in γ. We define a special type of contraction:
let Γ/1e ∶= (Γ/e)/Ei(v1). That is, we contract along e, and delete all other edges originally in Ei(v1). Note
that the contraction process merges vertices v1 and v2 into a “supervertex,” which we denote v12.

Then vector field γ descends uniquely to a vector field γ on Γ/1e. Every vector field γ in Γ/1e corresponds
uniquely to a vector field of Γ containing e, obtained by letting the unique edge coming out the supervertex
v12 in γ be the unique edge coming out of the vertex v2 in γ, and letting e be the unique edge with source at
v1 in γ. This inverse map shows that the vector fields of Γ containing e are in bijection with the vector fields
of Γ/1e. This bijection is weight-preserving up to a factor of wt(e). Finally, note that γ and its contraction
γ have the same number of cycles, with the same voltages. If a cycle contains e in γ, then that cycle is
made one edge shorter in γ, but still has positive length since e is assumed to not be a loop. If c is a cycle
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containing e in γ, then since e has voltage 1, the cycle voltage ν(c/e) of the contracted version of c is equal
to the cycle voltage before contraction. Thus, we may write

Ω(Γ) = Ω(Γ/e) +wt(e)Ω(Γ/1e)
By inductive hypothesis, since Γ/e and Γ/1e have strictly fewer non-loop edges than Γ, we have

Ω(Γ/e) +wt(e)Ω(Γ/1e) = detL (Γ/e) +wt(e)detL (Γ/1e)
Note that L (Γ/e) is equal to L (Γ) with wt(e) deleted from both the 1,1- and 1,2-entries. Therefore, via
expansion by minors, we obtain

detL(Γ/e) +wt(e)detL1
1(Γ) +wt(e)detL2

1(Γ) = detL (Γ)(3)

where L j
i (Γ) is the submatrix of L (Γ) obtained by removing the i-th row and the j-th column.

To construct L (Γ/1e) from L (Γ), we disregard the first row of L (Γ), since the special contraction Γ/1e
simply removes the outgoing edges Ei(v1). Then, we combine the first two columns of L (Γ) by making
their sum the first column of L (Γ/1e), since when we perform a contraction that merges v1 and v2 into v12,
we also have Et(v1)∪Et(v2) = Et(v12). Thus L (Γ/1e) is a (∣V ∣− 1)× (∣V ∣− 1) matrix that agrees with both
L 1

1 (Γ) and L 2
1 (Γ) on its last ∣V ∣ − 2 columns, and whose first column is the sum of the first columns of

L 1
1 (Γ) and L 2

1 (Γ). Therefore,
detL (Γ/1 e) = detL 1

1 (Γ) + detL 2
1 (Γ)

Substituting into (3), we obtain
detL (Γ) = detL (Γ/e) +wt(e)detL (Γ/1 e)

= Ω(Γ/e) +wt(e)Ω(Γ/1 e)
= Ω(Γ)

as desired. ∎

The second proof of the theorem follows a style similar to Chaiken’s proof of the Matrix Tree Theorem
in [Cha82]. Chaiken actually proves a more general identity, which he calls the “All-Minors Matrix Tree
Theorem,” that gives a combinatorial formula for any minor of the voltage Laplacian. We do not reproduce
such generality here, but instead follow a simplified version of his proof, more along the lines of Stanton and
White’s version of Chaiken’s proof of the Matrix Tree Theorem [SW86].

Proof. (Second proof of Theorem 3.2) (Chaiken). Let Γ have n vertices. For simplicity, assume that Γ has no
multiple edges, since we can always decomposed detL (Γ) into a sum of determinants of voltage Laplacians
of simple subgraphs of Γ, which also partitions the sum given in the theorem. We also assume that Γ is a
complete bidirected graph, since we can ignore edges not in Γ by just considering them to have edge weight
0. Write L (Γ) = (ℓij), write D(Γ) = (dij), and write A (Γ) = (aij), so that ℓij = δijdii − aij . Then the
determinant of L (Γ) may be decomposed as

detL (Γ) = det(δijdii − aij) = ∑
S⊆[n]

⎡⎢⎢⎢⎢⎣
∑

π∈P (S)
(−1)#C(π)wtν(π) ∏

i∈[n]−S
dii

⎤⎥⎥⎥⎥⎦
where P (S) denotes the set of permutations of S, the set C(π) is set of cycles of π, and wtν(π) ∶=∏i∈S ai,π(i).
The product of the dii may be rewritten as a sum over functions [n] − S → [n], yielding

detL (Γ) = ∑
S⊆[n]

∑
π∈P (S)

(−1)c(π)wtν(π) ∑
f ∶[n]−S→[n]

wt(f)

= ∑
S⊆[n]

∑
π∈P (S)

∑
f ∶[n]−S→[n]

(−1)c(π)wtν(π)wt(f)(4)

where wt(f) denotes the unvolted weight of the edge set corresponding to the function f , since this part of
the product ultimately comes from the degree matrix. Thus, the determinant may be expressed as a sum of
triples (S,π, f) of the above form—that is, we let S be an arbitrary subset of [n], we let π be a permutation
on S, and we let f be a function [n] − S ↦ [n].
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The permutation π may always be decomposed into cycles, and f will sometimes have cycles as well—that
is, sometimes we have f (m)(k) = k for some k ∈ Z and k ∈ [n] − S. We can “swap” cycles between π and f .
Suppose c is a cycle of f that we want to swap into π. Let the subset of [n] on which c is defined be denoted
W . Then we may obtain from our old triple a new triple (S∐W,π∐ c, f ∣[n]−S−W ), where π∐ c denotes
the permutation on S∐W given by (π∐ c)(v) = π(v) if v ∈ S and (π∐ c)(v) = c(v) if v ∈ W . That is, we
“move” C from f to π. Similarly, if c is a cycle of π, then we can obtain a new triple (S −W,π∣S−W , f∐ c).
Note that these two operations are inverses.

This process is always weight-preserving—it does not matter whether c is considered as part of π or as part
of f , since it will always contribute wt(c) to the product. However, one iteration of this map will swap the
sign of (−1)#C(π), and will also remove or add a factor from wtν(π) corresponding to the voltage of c. If π
and f have k cycles amongst both of them, then there are 2k possibilities for swaps, yielding a free action of
(Z/2Z)k. If we start from the case π is the empty partition, then the sign (−1)#C(π) starts at 1. Every time
we choose to swap a cycle c into π from f , we flip this sign and multiply by ν(c), effectively multiplying by
−ν(c). Thus, the sum of terms in (4) coming from the orbit of the action of (Z/2Z)k on (S, f, π) is

wt(π)wt(f) ∏
c∈C(π)∪C(f)

(1 − ν(c))

where wt(π) is now unvolted. This orbit class corresponds to the contribution of one vector field γ of Γ to
the overall sum, where γ is the unique vector field such that wt(γ) = wt(π)wt(f). Thus, summing over all
orbit classes, we obtain the desired formula:

detL (Γ) = ∑
γ⊆Γ

⎡⎢⎢⎢⎢⎣
wt(γ) ∏

c∈C(γ)
(1 − ν(c))

⎤⎥⎥⎥⎥⎦
∎

Corollary 3.3 gives a fast proof of the Matrix Tree Theorem (Theorem 1.3). Indeed, Chaiken considers
Theorem 3.2 to be a generalization of the Matrix Tree Theorem.

Proof. (Matrix Tree Theorem) The set Tvj(Γ) of arborescences of the graph Γ rooted at v remains the same
if we remove all edges in Ei(vj) and replace them with a single loop e, so let this be the case. We assign a
Z/2Z-voltage to Γ: let all edges of Γ be positive except e, which is negative. Then the negative vector fields
of Γ are precisely the arborescences of Γ plus the edge e—no other configurations are possible, since any
cycle other than the loop e would be positive. Since every such negative vector field has exactly one cycle
(the loop e), by the corollary the sum of the weights of the arborescences of Γ is given by

Avj(Γ) =
detL (Γ)
2wt(e)

.

However, the row in L (Γ) corresponding to vj consists of all zeroes except in the column corresponding to
v, which contains 2wt(e). Thus, detL (G) is given by 2wt(e)detL j

j (Γ), where detL j
j (Γ) is the minor of

L (Γ) corresponding to removing the j-th row and column. Thus,
detL v

v (Γ) = Av(Γ)

as desired. ∎

4. The ratio formula for 2-fold covers

We now state and prove a result about the arborescences of any 2-fold covering graph. Recall in that in
Proposition 1.5, we showed that the ratio Aṽ(Γ̃)

Av(Γ) is well-defined and independence of the choice of vertex v

when G is simple and strongly connected. The study of R-systems occurs almost exclusively in the context
of strongly connected simple digraphs, but with the proposition in hand we no longer need to consider the
relevant R-system. Thus, we may extend the proposition to any directed multigraph:
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Corollary 4.1. (Invariance under rerooting). Proposition 1.5 extends to arbitrary multigraphs whenever
possible. That is, even if G is not simple or strongly connected, we still have that the ratio Aṽ(Γ̃)

Av(Γ) is
independent of the choice of vertex v and its lift ṽ as long as this ratio is defined (i.e. Av(Γ) ≠ 0).

Proof. Suppose Γ is simple but not necessarily strongly connected. We may consider Γ as a subgraph of the
complete graph K∣V ∣ (any strongly connected graph K ⊇ Γ with the same vertex set as G would do as well).
Denote the complement of the edge set of G in K∣V ∣ as EK/Γ. By Proposition 1.5, we know that Aṽ(K̃∣V ∣)

Av(K∣V ∣)
is

well-defined and independent of the choice of v.

Now note that whenever an edge of Γ has weight 0, any arborescence containing that edge vanishes in the
polynomial Av(Γ). Thus, let φ be the evaluation homomorphism that maps the weight of every edge in
EK/Γ to 0, so that

φ(Av(K∣V ∣)) = Av(Γ)(5)
φ(Aṽ(K̃∣V ∣)) = Aṽ(Γ̃)(6)

since every arborescence of Γ rooted at v is also an arborescence of K∣V ∣ rooted at v, and this set of
arborescences is precisely the set of arborescences not containing any edge in EK/V (and similarly for K̃∣V ∣
and Γ̃). Since ratio of the left-hand sides of equations (5) and (6) is invariant under changing root, so is the
ratio of the right-hand sides.

In the additional case that Γ is not simple, we can augment Γ to a graph Γ+ by placing a vertex on the
midpoint of each edge of Γ—given e = (u, v), we add a vertex ve with unique ingoing edge (u, ve) and
unique outgoing edge (ve, v). Set ν(u, ve) = ν(u, v) and ν(ve, v) = 1. Then Γ+ is a simple graph, since every
edge is either of the form (ve, v) or (u, ve), and we know ∣Ei(ve)∣ = ∣Et(ve)∣ = 1. We therefore know that
Proposition 1.5 holds for Γ+. However, note that whenever we root at some vertex v ∈ V (Γ) ⊆ V (Γ+), every
arborescence must contain every edge of the form (ve, v), since this is the only outgoing edge of ve; similarly,
every arborescence of the cover of Γ+ contains both lifts of every (ve, v). Since these edges must always be
used in both of these constructions, we may freely contract along them without cutting out or merging any
arborescences in both Γ+ and Γ̃+. Contracting along every such edge transforms Γ+ back into Γ. Therefore,
if we let φ ∶ wt(ve, v) ↦ 1 and φ ∶ wt(u, ve) = wt(u, v), we have Av(Γ) = φ(Av(Γ)) and Aṽ(Γ̃) = φ(Aṽ(Γ̃).
Therefore, Proposition 1.5 result holds for non-simple Γ as well.

∎

We now turn to one the major theorems of this report, which provides a formula for Av(Γ̃)
Av(Γ) when Γ̃ is a 2-fold

cover:

Theorem 4.2. Let Γ be an edge-weighted Z/2Z-volted directed multigraph—that is, a signed graph. For any
vertex v of Γ and any lift ṽ of v to the derived graph Γ̃ of Γ, we have

Av(Γ)detL (Γ) = 2Aṽ(Γ̃)

Equivalently, either Av(Γ) = 0 or we have

Aṽ(Γ̃)
Av(Γ)

= 1

2
detL (Γ).

Proof. We proceed by strong induction, and by relying heavily on the fact that we can usually prove the
formula rooting at a specific vertex to proliferate the formula to any vertex. We will also apply the results
about negative vector fields from Corollary 3.3.
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4.1. Base cases. First, note that if some vertex of Γ has outdegree 0, then both sides of the above identity
are 0, no matter which root is chosen, since a row of detL (Γ) will be the zero vector and at least two
vertices in Γ̃ will have outdegree 0.

Next, suppose that every vertex of Γ has outdegree exactly 1. Choose any v ∈ G. Then there is only one
candidate for a negative vector field of Γ, and only one candidate for an arborescence of Γ rooted at v. If Γ
has more than one cycle, then Γ is disconnected, so that Av(Γ) = 0 and Aṽ(Γ) = 0. Assume Γ has exactly
one cycle. If this cycle does not contain v, then no path from the vertices in the cycle to v exists, so no
arborescence rooted at v exists, and Av(Γ) = Aṽ(Γ̃) = 0. Now assume that the unique cycle of Γ contains
v. If this cycle is positive, then that no negative vector fields exist, and thus detL (Γ) = 0 by Corollary 3.3.
Furthermore, there exist two disjoint lifts of this cycle to Γ̃, which again means that Γ̃ is disconnected, so
that Aṽ(Γ) = 0. Thus, the statement holds in these cases.

The only remaining case is if Γ has a unique negative cycle that contains v. Then this cycle lifts to a cycle
twice as long in Γ̃ containing both lifts v′ and v′′ of v, which is the unique cycle in G̃. Therefore, the edges
of G̃, except the unique edge in Ei(ṽ), form a unique arborescence T̃ rooted at ṽ. Siimilarly, the edges of G,
except the unique edge in Ei(v), form a unique arborescence T rooted at v; and Γ forms the unique negative
vector field γ of itself. Thus wt(T )wt(γ) = wt(Γ̃). Since detL (Γ) = 2wt(γ) by Corollary 3.3, previous
proposition, we conclude that Av(Γ)detL (Γ) = 2Aṽ(Γ̃) . This proves the identity when ∣E∣ ≤ ∣V ∣.

4.2. Main inductive step. Now suppose that the identity holds whenever ∣E∣ ≤ k for some k ≥ ∣V ∣, and
let G have k + 1 edges. By the pigeonhole principle, at least one vertex v of G satisfies ∣Ei(v)∣ ≥ 2. Assume
further that we can choose such v with Av(Γ) ≠ 0.

Let e be any edge in Ei(v), and define Ee
i (v) ∶= Ei(v)/e. Then both G/e and G/Ei(v) have at most k edges,

since ∣Ei(v)∣ ≥ 2. By inductive hypothesis,

Av(Γ/e)detL (Γ/e) = 2Aṽ(Γ̃/e)

Av(Γ/Ee
i (v))detL (Γ/Ee

i (v)) = 2Aṽ( ̃Γ/Ee
i (v)))

Without loss of generality, let ṽ = v′, and let e′, e′′ be the lifts of e with sources at v′, v′′, respectively. Every
arborescence of Γ̃ rooted at v′ contains exactly one edge in Ei(v′′). This edge is either e′′ or it is not, so we
may partition such arborescences into two disjoint classes based on whether they include e′′—that is,

Av′(Γ̃) = Av′(Γ̃/e′′) +Av′(Γ̃/Ee′′

i (v′′))

However, note that

Av′(Γ̃/e′′) = Av′(Γ̃/{e′, e′′}) = Av′(Γ̃/e)

No arborescence rooted at v′ utilizes any edge with source at v′, so we may simply delete the edge e′ from
Γ as it suits us. Similarly,

Av′(Γ̃/Ee′′

i (v′′) = Av′(Γ̃/(Ee′′

i (v′′) ∪Ee′

i (v′)))

= Av′( ̃Γ/Ee
i (v))

Thus,

Aṽ(Γ̃) = Aṽ(Γ̃/e) +Aṽ( ̃Γ/Ee
i (v))

= 1

2
Av(Γ/e)detL (Γ/e) +

1

2
Av(Γ/Ee

i (v))detL (Γ/Ee
i (v))

Now, note that Av(Γ/e) = Av(Γ/Ee
i (v)) = Av(Γ)—again, no arborescence rooted at v utilizes any edge in

Ei(v). Thus,

2Aṽ(Γ̃) = Av(Γ) (detL (Γ/e) + detL (Γ/Ee
i (v)))
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Finally, note that the matrix L (Γ), the matrix L (G/e), and the matrix L(G/Ee
i (v)) are all equal except

in the row corresponding to v, and that the sum of the v-th rows of L (Γ/e) and L(Γ/Ee
i (v)) is equal to the

v-th row of L (Γ). Thus, detL (Γ) = detL (Γ/e) + detL(Γ/Ee
i (v)), so that

2Aṽ(Γ̃) = Av(Γ)detL (Γ)

as desired. By Corollary 4.1, we conclude that

2Aũ(Γ̃) = Au(Γ)detL (Γ)

for any choice of u ∈ V .

4.3. Exceptional cases. We must choose v to be some vertex with ∣Ei(v)∣ ≥ 2, but what if all such vertices
satisfy Av(Γ) = 0? Then either Au(Γ) = 0 for all u ∈ Γ, in which case the theorem is trivially satisfied, or
there exists some vertex u with outdegree exactly 1 such that Au(Γ) ≠ 0.

Suppose that in the latter case we can choose u such that there exist two distinct arborescences T1 and T2

rooted at u. Then there must exist some vertex w such that the outgoing edge e of w in T1 is distinct from
the outgoing edge f of w in T2. Define Γ+ to be the graph obtained by Γ by adding an auxiliary edge a from
u to w, so that Γ+ has k + 2 edges, and therefore Γ+/e and Γ+/Ee

i (w) both have at most k + 1 edges. Since
u has outdegree 2 in both Γ+/e and Γ+/Ee

i (w), we may apply the inductive step to conclude

Au(Γ+/e)detL (Γ+/e) = 2Aũ(Γ̃+/e)

Au(Γ+/Ee
i (w))detL (Γ+/Ee

i (w)) = 2Aũ( ̃Γ+/Ee
i (w))

Note that Au(Γ+/Ee
i (w)) ≠ 0, since by assumption there exists at least one arborescence T1 rooted at u using

the edge e, so that T1 remains an arborescence even after removing the edges Ee
i (v). Similarly, Au(Γ+/e) ≠ 0.

Therefore, we may apply Proposition 4.1 to conclude

Aw(Γ+/e)detL (Γ+/e) = Aw̃(Γ̃+/e)

Aw(Γ+/Ee
i (w))detL (Γ+/Ee

i (w)) = Aw̃( ̃Γ+/Ee
i (w))

Since e and the edges of Ee
i (w) are elements of Ei(w), we can apply the same arguments as we did in the

original inductive step to show that Aw(Γ+/e) = Aw(Γ+/Ee
i (w)) = Aw(Γ+), that Aw̃(Γ̃+/e)+Aw̃( ̃Γ+/Ee

i (w)) =
Aw̃(Γ̃+), and ultimately t

Aw(Γ+)detL (Γ+) = 2Aw̃(Γ̃+)

Since Aw(Γ+) ≠ 0—the auxiliary edge a ensures that any arborescence rooted at u may be modified into an
arborescence rooted at w—we may reroot to conclude

Au(Γ+)detL (Γ+) = 2Aũ(Γ̃+)

Note that every arborescence T ∈ Tu(Γ) lifts uniquely to an arborescence T + ∈ Tu(Γ+) not containing a,
and conversely that every arborescence T + ∈ Tu(Γ+) not containing a descends uniquely to an arborescence
T ∈ Tu(Γ). We therefore perform the same trick that we did in the proof of Corollary 4.1. Let φ be the
evaluation homomorphism mapping wt(a) ↦ 0. Then have φ(Au(Γ+)) = Au(Γ), φ(L (Γ+)) = L (Γ), and
φ(Aũ(Γ̃+)) = Aũ(Γ̃). Since φ is a homomorphism, we conclude

Au(Γ)detL (Γ) = 2Aũ(Γ̃)

Thus, the formula is proven.

4.4. Rooted tree case. Finally, we consider the case where

(1) No vertices with outdegree ≥ 2 root an arborescence;

(2) There exists at least one arborescence rooted at some vertex; and

(3) All vertices with outdegree 1 root no more than 1 arborescence?
12



In this case, Γ must have a structure similar to a rooted tree. Let u be a vertex with outdegree 1 that roots
exactly one arborescence T . Without loss of generality, u is the only vertex of outdegree 1—we may contract
along the unique outgoing edge e of any other such vertex u′ to yield a graph with fewer edges otherwise,
since

● Every arborescence of Γ rooted at u passes through e, so that that Au(Γ) = wt(e)Au(Γ/e);

● Every arborescence of Γ̃ passes through both lifts of e, so that Aũ(Γ̃) = wt(e)2Au(Γ̃/e); and

● detL (Γ) = wt(e)detL (Γ/e) via expansion by minors along the row corresponding to u′.

Therefore, the unique outgoing edge of u must be a loop, since otherwise the terminal vertex of this edge
roots an arborescence, violating condition 1 above since all vertices other than u have outdegree ≥ 2. We
may treat Γ as a Hasse diagram for the poset defined by T , with u the unique minimal element. Every other
vertex v of Γ has exactly one edge belonging to the arborescence T , and all other edges of v must point to
some v ≥ u. Otherwise, a non-cyclic path from v to u distinct from the one given by T would exist, violating
the uniqueness of the arborescence T .

Take any vertex w ≠ u. Let e be the edge of w belonging to T . Define Γ+ to be the graph obtained from
Γ by adding an auxiliary edge a from u to w. Then we apply the same trick with the arborescences of the
cover to conclude that Γ+/e and Γ+/Ee

i (w) satisfy the formula when rooted at u. Note that Au(Γ+/Ee
i (w))

is never zero, since T remains an arborescence in Γ+/Ee
i (w), so we may apply Corollary 4.1 to conclude that

Av(Γ+/Ee
i (w))detL (Γ+/Ee

i (w)) = Aw̃( ̃Γ+/Ee
i (w)).

If any edge in Ee
i (w) does not point towards w, it points to some vertex w′ > w, so that w′ roots an

arborescence by modifying T to pass through a and the edge (w,w′) ∈ Ee
i (w). Since w′ has outdegree ≥ 2

and roots at least one arborescence, we conclude that the desired identity also holds on Γ+/e when rooting
at w instead. In this case, we know the formula holds for Γ+/e and Γ+/Ee

i (w) when rooting at w, so now we
may apply the same logic as the inductive step to conclude that the formula holds for Γ+ when rooting at
w, and therefore when rooting at u. Setting wt(a) = 0 then shows that the formula holds for Γ rooting at u.

If this process goes through for at least one vertex w ≠ u, then we are done. Otherwise, we conclude that
edge set of Γ consists only of the tree T plus loops, in which case we may prove the formula directly. Without
loss of generality, all loops are negative, since positive loops do not contribute to either the negative vector
fields of Γ nor the arborescences of Γ̃. Then every arborescence of Γ̃ contains at least one lift of every edge
in T , but this is the only condition on the arborescences—as long as the lift of the same negative loop is not
used twice, there can be no cycles. For every loop besides the one at u, there are two choices of lifts. Thus,
for each negative vector field γ ⊆ Γ, we obtain 2#C(γ)−1 arborescences of Γ̃—one factor of two for each loop
of γ other than the one at u. Since this process uniquely describes all arborescences of Γ̃, we have

2Aũ(Γ̃) = wt(T )∑
γ⊆Γ

2#C(γ)wt(γ)

= Au(Γ)detL (Γ)

This exhausts all possible exceptions to the inductive step, completing the proof.

∎

5. Generalization to other covers

The preceding proof unfortunately does not generalize to k-fold covers for k > 2—the main inductive step
fails because there are too many lifts of an outgoing edge of v, even if we disregard the outgoing edges of ṽ.
In this section, we attempt a more algebraic approach that generalizes to higher covers.
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5.1. Cyclic Prime Covers. We now restrict ourselves in the case when the voltage group G is a cyclic
group of prime order: let G = Z/pZ = {1, g, g2,⋯, gp−1}, where p is a prime number..

For a graph Γ and its cyclic p-cover Γ̃, we have the following conjecture as a generalization of Theorem 3.3.

Conjecture 5.1. Let Γ = (V,E) be a weighted Z/pZ-voltage directed multigraph, and let Γ̃ be its derived
graph. Let K be the reduced group algebra of Z/pZ over Q, so that K ≅ Q(ζp), where ζp is a primitive p-th
root of unity. Take any vertex v in Γ, and any lift of of v, ṽ ∈ Γ̃. Then

Aṽ(Γ̃) =
1

p
Av(Γ)NK/Q(detL (Γ))

where NK/Q(detL (Γ)) denotes the field norm of detL (Γ). Equivalently,

Aṽ(Γ̃) =
1

p
Av(Γ)

p−1
∏
i=1
[σi(detL (Γ)]

where σi is the field automorphism that maps ζp to ζip.

5.2. Change of Basis. Another possible direction that could give us the desired arborescence ratio is via
a change of basis of the Laplacian of Γ̃. Here we consider any regular k cover of a graph Γ. Throughout this
section, we fix the basis vector of the Laplacian matrix (viewed as endomorphism of a vector space) to be
(v(1)1 , v

(1)
2 ,⋯, v(1)n , v

(2)
1 ,⋯, v(2)n ,⋯, v(n)1 ,⋯, v(n)n ), where {v1,⋯, vn} is the set of vertices of graph G.

Let Γ = (V,E) be a graph, Γ̃ a regular k-fold cover of Γ, let L(Γ̃) denote the regular Laplacian of Γ̃. Suppose
∣V ∣ = E and let In be the n × n identity matrix.

Lemma 5.2. Let S be a kn × kn matrix consists of k × k blocks:

S ∶=

⎛
⎜⎜⎜⎜⎜
⎝

In 0 0 ⋯ 0 0
−In In 0 ⋯ 0 0
0 −In In ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ −In In

⎞
⎟⎟⎟⎟⎟
⎠

Let L′ = SL (Γ)S−1, then L′ is of the form

L′ = (L (G) F
0 D

)

where L (Γ) is the Laplacian of the graph Γ and D is some n(k − 1) by n(k − 1) matrix. In case of k = 2,
the matrix D is just the signed Laplacian of G.

Proof. Notice that the conjugation by matrix S changes the basis of the Laplacian matrix to

(
n

∑
i=1

v
(i)
1 ,⋯,

n

∑
i=1

v(i)n ,
n

∑
i=2

v
(i)
1 ,⋯,

n

∑
i=2

v(i)n ,
n

∑
i=3

v
(i)
1 ,⋯,

n

∑
i=3

v(i)n ,⋯,⋯,⋯, v(n)1 ,⋯, v(n)n ) .

∎

Conjecture 5.3. Let D be the matrix derived as in lemma 4.5, then for any v ∈ Γ and its lift ṽ in Γ̃, we
have

Aṽ(Γ̃) = Av(Γ)detD

Proof. This conjecture has been turned into a theorem, whose proof will be updated later. ∎
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