Generating Functions for f-vectors of Simple Weight Polytopes

Jiyang Gao, Vaughan McDonald

MIT, Harvard University

28 January 2019
1 Introduction to Polytopes

2 Coxeter Group and Weight Polytopes

3 f-polynomials of Simple Weight Polytopes
Definition (f-vector and f-polynomial)

Define the *f*-vector of a *r*-dim Polytope *P* as
\[f(P) := (f_0, \ldots, f_r), \]
where \(f_i \) is the number of \(i \)-dimensional faces of *P*.

Define its *f*-polynomial as
\[f_P(t) = \sum_{i=0}^{r} f_i t^i. \]

Example:

A cube has 8 vertices, 12 edges and 6 faces.

\[f(P) = (8, 12, 6, 1) \]

\[f_P(t) = 8 + 12t + 6t^2 + t^3 \]
Definition (h-vector and h-polynomial)

Define the *h-polynomial* of a r-dim Polytope P as

$$h_P(t) = f_P(t - 1) = \sum_{i=0}^{r} f_i(t - 1)^i.$$

Assume $h_P(t) = \sum_{i=0}^{r} h_i t^i$, then define its *h-vector* as

$$h(P) := (h_0, h_1, \ldots, h_r).$$

Example:

A cube has $f_P(t) = 8 + 12t + 6t^2 + t^3$.

Replace t with $t - 1$.

$$h_P(t) = f_P(t - 1) = 1 + 3t + 3t^2 + t^3$$

$$h(P) = (1, 3, 3, 1)$$
Definition (h-vector and h-polynomial)

Define the *h-polynomial* of a r-dim Polytope P as

$$h_P(t) = f_P(t - 1) = \sum_{i=0}^{r} f_i(t - 1)^i.$$

Assume $h_P(t) = \sum_{i=0}^{r} h_i t^i$, then define its *h-vector* as

$$h(P) := (h_0, h_1, \ldots, h_r).$$

Example:

A cube has $f_P(t) = 8 + 12t + 6t^2 + t^3$. Replace t with $t - 1$.

$$h_P(t) = f_P(t - 1) = 1 + 3t + 3t^2 + t^3$$

$$h(P) = (1, 3, 3, 1)$$

Is this always symmetric?
Definition (Simple Polytope)

A r-dimensional polytope is called a *simple polytope* if and only if each vertex has exactly r incident edges.

For example, a cube is a simple polytope.

Theorem (Dehn-Sommerville equation)

For any simple polytope P, its h-vector is symmetric.
Definition (Face Poset)

The face poset of polytope P is the poset \{faces of P\} ordered by inclusion of faces.

Example:

Note: A Face Poset is graded.
Methods to describe a polytope:

- f-polynomial/h-polynomial;
- face poset.
Coxeter Group and Weight Polytopes
Definition (Finite Reflection Group)

A *finite reflection group* is a finite subgroup $W \subset \text{GL}_n(\mathbb{R})$ generated by reflections, i.e. elements w such that $w^2 = 1$ and they fix a hyperplane H and negate the line perpendicular to H.

Example: One example of a finite reflection group is the Dihedral Group $I_n = \{s, t \mid s^2 = t^2 = e, (st)^n = e\}$.
Definition (Coxeter Group)

A Coxeter Group is a group W of the form

$$W \cong \langle s_1, \ldots, s_n \mid s_i^2 = e, (s_is_j)^{m_{ij}} = e \rangle$$

for some $m_{ij} \in \{2, 3, 4, \ldots \} \cup \{\infty\}$.

If W is finite, then W is called a Finite Coxeter Group.

$S = \{s_1, s_2, \ldots, s_n\}$ is called the Generating Set of W.
Here is a BIG theorem of Coxeter:

Theorem (Coxeter)

Finite Coxeter groups = Finite reflection groups.
Definition (Coxeter Diagram)

Given a Coxeter presentation \((W, S)\), we can encapsulate it in the \textit{Coxeter Diagram}, denoted \(\Gamma(W)\), a graph with \(V = S\) and if \(m_{ij} = 3\), \(s_i\) and \(s_j\) are connected with no label and if \(m_{ij} > 3\), \(s_i\) and \(s_j\) are connected with label \(m_{ij}\).

Example: The dihedral group \(I_n\) has Coxeter diagram

\[
\begin{array}{c}
\text{\(n\)} \\
\bullet - \bullet
\end{array}
\]
Amazingly, finite Coxeter groups are classified! They come in four infinite families, A_n, B_n, D_n, and I_n, as well as a finite collection of exceptional cases. The Coxeter diagrams look as follows:

We will focus our energies on types A_n, B_n, D_n.

![Coxeter Diagrams](image)
Definition (Weight Polytope)

Given a finite Coxeter group W, $\lambda \in \mathbb{R}^n$, we define the Weight Polytope P_{λ} to be the convex hull of \{$w \cdot \lambda$ | $w \in W$\}.
Definition (Stabilizer)

Let $J(\lambda) = \{ s \in S \mid s(\lambda) = \lambda \}$ be the stabilizer of λ.

Theorem (Maxwell)

The f-vector and face lattice of a weight polytope P_λ is only dependent on W, S and $J(\lambda)$.
Weight Polytopes

Weight Polytope Example 1

Coxeter Group

\[W = A_n = \text{symmetric group } S_{n+1} \]

Vector \(\lambda \)

\[\lambda = (0, \ldots, 0, 1) \]

- \(n \) zeros
Weight Polytope Example 1

Coxeter Group

\[W = A_n = \text{symmetric group } S_{n+1} \]

Vector \(\lambda \)

\[\lambda = (0, \ldots, 0, 1) \]

\(n \) zeros

\[J(\lambda) \]

1 2 3 \(\cdots \) \(n-1 \) \(n \)

Polytope

Name: Simplex

Vertices: Set of vectors with \(n \) zeros and 1 one
Weight Polytope Example 2

Coxeter Group

\[W = B_n = \text{signed permutation group} \]

Vector \(\lambda \)

\[\lambda = (1, 1, \ldots, 1) \]

\(n \) ones
Weight Polytope Example 2

Coxeter Group

\[W = B_n = \text{signed permutation group} \]

\[
\begin{array}{cccccc}
4 & & & & & \\
(-1) & (12) & (23) & (34) & (n - 1, n)
\end{array}
\]

Vector \(\lambda \)

\[\lambda = (1, 1, \ldots, 1) \]

\[J(\lambda) \]

\[1 \quad 2 \quad 3 \quad 4 \quad \ldots \quad n \]

Polytope

Name: HyperCube

Vertices: Set of vectors with 1 and \(-1\)
Section 3

f-polynomials of Simple Weight Polytopes
Theorem (Renner)

A type A_n or B_n weight polytope is simple iff its Coxeter diagram has one of the following structures.

- \(\geq 2 \) points
- \(\leq n \) points
- \(\leq n - 3 \) points
Renner’s Classification of Simple Polytopes

Theorem (Renner)

A type A_n or B_n weight polytope is simple iff its Coxeter diagram has one of the following structures.

- ≥ 2 points
- $4 \leq n$ points
- $4 \leq n - 3$ points

What are their f-polynomials?
Case 1

Theorem (Golubitsky)

Denote $F_{n,k}(t)$ as the f-polynomial for the f polytope of

\[k \text{ points} \]

\[\begin{array}{ccccccc}
\includegraphics[width=0.5\textwidth]{polytope.png} \\
\text{\textit{n points}}
\end{array} \]

Then,

\[
\sum_{n \geq k \geq 0} F_{n,k}(t) \cdot \frac{x^{n+1}y^k}{(n+1)!} = \frac{e^{xy}}{y-1} \cdot \left(y + \frac{e^{txy} - t - 1}{t + 1 - e^{tx}} \right) - 1.
\]
Case 2

Theorem

Denote $F_{n,a,b}(t)$ as the f-polynomial for the f polytope of

\[a \text{ points} \quad \circ \quad \cdots \quad \circ \quad \cdots \quad \circ \quad \cdots \quad \circ \quad b \text{ points} \]

\[\begin{array}{c}
\underbrace{\circ \cdots \circ} \quad n \text{ points}
\end{array} \]

Then,

\[
\sum_{a,b \geq 0} \sum_{n > a+b} F_{n,a,b}(t) \cdot \frac{x^{n+1} y^a z^b}{(n+1)!} = \frac{1}{y^2 - y} \left(x + \frac{(xy - e^{xy} + 1)(xz - e^{xz})}{y} \right)
\]

\[
= \left(tz + (t + 1)e^{xz} - t - e^{(t+1)xz} \right) \left(\frac{ty + (t+1)e^{(tx)} - t - e^{(t+1)tx}}{(t-e(tx)+1)y} - e^{(tx)} \right)
\]

\[
+ \frac{e^{(xy+zx)}}{ty} + \frac{ze^{(tx)} - ye^{(txz)}e^{(xy+zx)}}{t(y-z)y} \right).
\]
Case 3

Theorem

Denote $F_{n,k}(t)$ as the f-polynomial for the f polytope of n points and k points.

Then,

$$
\sum_{n>k \geq 0} F_{n,k}(t) \cdot \frac{x^n y^k}{n!} =
$$

$$
\frac{1}{y-1} \left(e^{(t+2)xy} + \frac{e^{tx} \cdot (e^{2(t+1)xy} - (t+1) e^{2xy} + t - ty)}{(t + 1 - e^{2tx})y} \right).
$$
Case 4

Theorem

Denote $F_{n,k}(t)$ as the f-polynomial for the f polytope of

\[
\begin{array}{c}
\begin{array}{c}
\bullet \quad \bullet \quad \cdots \quad \bullet \\
4 \quad \cdots \\
n \text{points} \quad k \text{ points}
\end{array}
\end{array}
\]

Then,

\[
\sum_{n-2 > k \geq 0} F_{n,k}(t) \frac{x^{n+1} y^k}{(n+1)!} = \frac{1}{y^2 - y} \left(xy + \left(t + 1 \right) e^{(2 xy)} \right) - e^{(2 tx)}.
\]
Ingredients of the Proof

Definition (*J*-minimal subset)

For a Coxeter diagram $\Gamma = (W, S)$ and subset $J \subseteq S$, a

J-minimal subset is a subset $X \subseteq S$ such that no connected component of X on the Coxeter diagram lies entirely in J.

Example:

```
1 2 3
```

J

All six *J*-minimal subsets

Not *J*-minimal
Ingredients of the Proof

Theorem (Renner, Maxwell)

Consider the action of W on $\{\text{faces of } P_\lambda\}$, then there is a bijection

$$f : \{\text{J(}\lambda\text{-minimal sets)}\} \rightarrow \{\text{orbits of the action}\}.$$

If X is J(\lambda)-minimal, then all faces in $f(X)$ are called X-type face. All X-type face has dimension $|X|$, and the number of X-type faces is

$$\frac{|W|}{|W_{X^*}|},$$

where $W_{X^*} \subseteq W$ is the subgroup generated by

$$\{s \in S | s \in X \text{ or } s \text{ and } X \text{ are not connected}\}.$$
Example of Renner/Maxwell

| X | Face | W_{X^*} | $|W|/|W_{X^*}|$ |
|--------------|--------------|-----------|------------------|
| \emptyset | Vertices | $\{3\}$ | $48/2 = 24$ |
| 4 | Long Edges | $\{1, 3\}$ | $48/4 = 12$ |
| 4 | Triangle Edges | $\{2\}$ | $48/2 = 24$ |
| 4 | Octagons | $\{1, 2\}$ | $48/8 = 6$ |
| 4 | Triangles | $\{2, 3\}$ | $48/6 = 8$ |
| 4 | Truncated Cube | $\{1, 2, 3\}$ | $48/48 = 1$ |

J-polynomial f-vectors and cd-index of Weight Polytopes

Gao, McDonald
Summary: What have we done?

<table>
<thead>
<tr>
<th></th>
<th>f-polynomial</th>
<th>Face Poset</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Simple Weight Polytopes</td>
<td>✓</td>
<td>Maxwell (we rewrote ✓)</td>
</tr>
<tr>
<td>Weyl Group Weight Polytopes</td>
<td>✓ (some done by Golubitsky)</td>
<td>Renner</td>
</tr>
<tr>
<td>Simplex</td>
<td>Known</td>
<td>Known</td>
</tr>
</tbody>
</table>
The End!

Thank You!