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1. Measurements on Networks

Many of the basic definitions are the same as those in [2]. We reproduce them here for the sake
of convenience.

1.1. Networks on surfaces. Let S be a compact connected oriented surface, possibly with bound-
ary. A simple-crossing, vertex weighted oriented network on S is a directed graph N = (V,E)
embedded on S that satisfies the simple-crossing condition: V = B t I, where B is the set of
boundary vertices (each embedded on ∂S) and I is the set of interior vertices (each embedded on
intS), each boundary vertex is a source or a sink (i.e., has in-degree 0 and out-degree 1, or vice-
versa), and each interior vertex has in-degree 2 and out-degree 2, and the incoming edges (resp.
outgoing edges) are adjacent. Furthermore, each interior vertex v ∈ I is assigned an indeterminate
weight xv. Throughout the following, we will refer to N simply as a network on S.

Fixing a network N on a surface S, we study paths and walks on N , which come in several
types. By a (boundary) path we mean a directed walk on N from some v ∈ B to some w ∈ B (so
v is a source vertex and w is a sink) that may possibly traverse interior vertices and edges more
than once. We use the term closed walk in the usual way (so it also may possibly self-intersect in
vertices and edges). The collections of all boundary paths and closed walks on N are denoted by
P(N ) and C(N ), respectively. Later we also consider flows, which we define similarly to Talaska’s
definition: a flow is a collection F = P t C where P ⊂ P(N ), C ⊆ C(N ), each element f ∈ F is
self-avoiding, and no two f, f ′ ∈ F share a common edge.1 We call an element f ∈ F a component
of F , and we denote the collection of all flows on N by F(N ). Later it will be useful to consider
those flows whose components are only cycles, no boundary paths (resp. only boundary paths, no
cycles); in those cases we will refer to them explicitly as cycle flows (resp. path flows).

1.2. Measurements of classes. Now let p be any boundary path, closed walk, or component of
a flow on N ; we consider two different ways of assigning a weight to p that we call the highway and
underway measurements of p. For both, the setup is the same: at each interior vertex v ∈ I that
p traverses, p accumulates a certain weight contribution that depends on how p traverses v. The
total weight of p is defined to be the product of these weight contributions over all interior vertices
(with multiplicities). There are four possible local pictures for how p may traverse v; Figure 1
below lists the highway/underway weight contributions in each case.

We denote the highway and underway measurements of p by wtH(p) and wtU(p), respectively.
Note that at most one of wtH ,wtU is nonzero for any given p. Thus we call p a highway path (resp.
underway path) if wtH(p) 6= 0 (resp. wtU(p) 6= 0).

Now that we have defined a way of assigning a weight to any specific path or walk on N , we wish
to group these measurements in ways that are meaningful with respect to the topological data of

1Note here that we require that two components f, f ′ ∈ F be only edge-disjoint, while Talaska requires vertex-
disjointedness. This is because we consider vertex-weighted networks, while she considers edge-weighted networks.
Later, when we reinterpret our vertex-weighted networks as edge-weighted graphs, our definition of flow coincides
with hers.
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Figure 1. The weight contribution factors for highway/underway measurements
for each of the possible ways a path (shown in orange) may traverse a vertex (that
has weight x).

the surface S. To this end, let H = H1(S,Z) be the first homology group of S, and let C(N ) and
P(N ) be the collections of closed walks and boundary paths (i.e., walks from sources to sinks) on
N , respectively. Note that a given closed walk c ∈ C(N ) defines a homology class [c] ∈ H. If two
paths p, q ∈ P(N ) start at the same source and end at the same sink, then we say that p and q
are homologous, written p ∼ q, if the closed walk p ∪ q∗ ∈ C(N ) has trivial homology class (here,
q∗ denotes the path on S obtained by following q in reverse).

Now given a boundary path p ∈ P(N ), we call the quantity

M
[p]
H =

∑
p′:p′∼p

wtH(p′)

the highway measurement of the class [p]. Throughout the following, we will define everything in
terms of highway measurements for simplicity’s sake; the corresponding definitions for underway
measurements are made completely analogously, simply by replacing each subscript H with a U .

We wish to make a similar definition for M
[c]
H given a closed walk c ∈ C(N ), but we must make

a slight adjustment. We define the multiplicity mult(c) of c to be the maximum k ∈ N such that
c is obtained by repeating some other (shorter) closed walk c′ ∈ C(N ). Then we define

M
[c]
H =

∑
c′:[c′]=[c]

1

mult(c′)
wtH(c′),

the highway measurement of the class [c].
Next we define measurements of flows and how to group them. Given a flow F ∈ F(N ), we

define its highway weight wtH(F ) to be the product of each weight wtH(f) of a constitutent f ∈ F .
Indeed, a flow F also defines a homology class [F ] ∈ H: because H is commutative, it makes sense
to define [F ] :=

∏
f∈F [f ]. However, it turns out to be more useful to endow F(N ) with a finer

equivalence relation. In particular, for F, F ′ ∈ F(N ), we say F ∼ F ′ if F and F ′ correspond the
same homology class in H and they are supported on the same sets of source and sink vertices. By
abuse of notation, from now on we will write [F ] to mean the ∼-equivalence class of F ∈ F(N ).

As in the case of closed walks, we need to make a slight (different) adjustment to properly

define M
[F ]
H . To do this, note that a flow F ∈ F(N ) induces a bijection φF : B+ → B− between

B+, B− ⊂ B, the sets of sinks and sources ofN . If we fix orderings onB+ andB−,2 we can associate
φF (and hence F ) to a permutation σF ∈ S|B|/2. Recalling that F has a unique decomposition

2In practice one needs only to fix an ordering on B+, and then there are canonical ways to have this ordering
induce an ordering on B−.
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F = P t C, where P ⊆ P(N ) and C ⊆ C(N ), we define the sign sgn(F ) of the flow F to be

sgn(F ) = sgn(σF ) · (−1)|C|.

Finally, we then define

M
[F ]
H =

∑
F ′:[F ′]=[F ]

sgn(F ′) wtH(F ′),

the highway measurement of the class [F ].

1.3. The mirror symmetry conjecture. Now that we have developed meaningful ways of mea-
suring classes of paths, closed walks, and flows on N , we come to our main objects of interest:
rings generated by class measurements.

Definition 1.1. Given a network N , we define the type I highway measurement ring asso-
ciated to N as

RI
H(N ) = 〈M [p]

H ,M
[c]
H | p ∈ P(N ), c ∈ C(N )〉Q,

where 〈·〉Q denotes ring generation over Q. Furthermore, we define the type II highway mea-
surement ring associated to N as

RII
H(N ) = 〈M [F ]

H | F ∈ F(N )〉Q.

For each of the two previous definitions, we define the corresponding underway ringsRI
U(N ), RII

U(N )
in the obvious ways.

Now we are ready to state the mirror symmetry conjecture for networks on surfaces, the
main subject of this report.

Conjecture 1.2 (Lam-Pylyavskyy). Let N be any network. Then

RI
H(N ) = RI

U(N ) = RII
H(N ) = RII

U(N ).

2. Relating Type I and Type II Measurements

The first step in proving Conjecture 1.2 is to prove that the type I and type II highway mea-
surements generate the same ring, and similarly that type I and type II underway measurements
do the same. In other words, we would like to show that RI

H(N ) = RII
H(N ) and RI

U(N ) = RII
U(N ).

At the present, we are not able to show these equalities for a general network on a surface; we
are able, however, to prove them for a specific important class of networks on tori: the so-called
(n,m, k)-torus networks, as described in [1]. That is, we will work towards and then prove the
following result in this section.

Theorem 2.1. If N is a (n,m, k)-torus, then RI
H(N ) = RII

H(N ), and RI
U(N ) = RII

U(N ).

We will begin by demonstrating how to construct two edge-weighted graphs from a given
network—one which corresponds to highway measurements and one which corresponds to un-
derway measurements—and we will define and relate type I and type II measurements on such
graphs. In the second subsection, we will show how to encode the homological data of a network
in the edge-weighted graph, and we will hence deduce algebraic relations between type I and type
II measurements on an (n,m, k)-torus.
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Figure 2. The local transformation of N to GH(N ) (above) and GU(N ) (below).
Unmarked edges have weight 1.

2.1. Edge-weighted graphs. Given any (vertex-weighted) network N , we want to be able to
describe measurements on N as measurements on an edge-weighted graph, for which there are
specific tools—like adjacency matrices—that facilitate measurement computation. It turns out
that this is most easily accomplished by constructing two separate graphs: GH(N ), which encodes
highway measurements, and GU(N ), which encodes underway measurements.

The graphs GH(N ) and GU(N ) are constructed by changing N locally at each interior vertex
as shown in Figure 2.1. Note that any path through a vertex in N preserves its highway and
underway measurements in the corresponding paths in GH(N ) and GU(N ), respectively. This
justifies our approach of considering measurements on edge-weighted graphs.

Now we wish to introduce type I and type II measurements for edge-weighted graphs in such a
way that they agree with the corresponding measurements of a network N when applied to GH(N )
and GU(N ). This is best accomplished by encoding the measurements in generating functions.

Given an arbitrary edge-weighted directed graph G, let C(G) be the set of non-empty closed
walks in G, and let F(G) be the set of flows (collections of non-intersecting3 simple cycles) on G.
Then we define the type I generating function for G as

MI
C(G) =

∑
c∈C(G)

wt(c)

mult(c)
,

where wt(c) is the product of the weights of the edges in the closed walk, and mult(c) is defined as
it was for closed walks on networks. We also define the type II generating function for G as

MII
C(G) =

∑
F∈F(G)

(−1)|F |wt(F ).

Remark 2.2. We use the subscript C in these generating functions to emphasize that these mea-
surements are only taken over closed walks in G. Later we will define more general measurements
on G using a set of distinguished “boundary vertices” as well.

Note that these measurements agree with those defined on networks when restricting to closed
walks in the network. In other words,

MI
C(GH(N )) =

∑
[c]

M
[c]
H , (1)

3Here, we take “non-intersecting” to mean that no two cycles in a given flow share a common vertex. This is to
be contrasted with the corresponding definition for networks, where flow components may share a common vertex,
but not a common edge.



THE MIRROR SYMMETRY CONJECTURE FOR NETWORKS ON SURFACES 5

where the sum is taken over all equivalence classes of closed walks [c] on N , and

MII
C(GH(N )) =

∑
[F ]

M
[F ]
H , (2)

where the sum is taken over all equivalence classes [F ] of cycle flows on N . Similar statements are
true for GU(N ) and underway measurements.

We now prove two lemmas that together imply algebraic relations between type I and type II
measurements.

Lemma 2.3. Let G be an edge-weighted directed graph, and let A be its adjacency matrix. Then

det(I − A) = MII
C(G).

Proof. Suppose that G has n vertices, and let ai,j be the i, j-th entry of I −A. Recall the permu-
tation definition of the determinant:

det(I − A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

We can associate each term sgn(σ)
∏n

i=1 ai,σ(i) of this sum to a cycle flow in which each cycle is
of the form i → σ(i) → σ2(i) → · · · → i. The product

∏n
i=1 ai,σ(i) gives us the weight of the flow

defined by σ up to some sign.
Because we are taking the determinant of I −A (as opposed to simply −A), some of the terms

in the expansion of
∏n

i=1 ai,σ(i) will have a weight contribution of 1 from the loop i → i. This
corresponds to taking cycle flows in which not every vertex is a member of some cycle.

The sign of each term in the expansion of sgn(σ)
∏n

i=1 ai,σ(i) is therefore (−1)k+`, where sgn(σ) =
(−1)` and k is the number of vertices of G used in the cycle flow corresponding to this term.
Suppose σ has cycle type (λ1, λ2, . . . , λm). Then k = k′+

∑
λi>1 λi, where k′ is the number of loops

in this family, and also ` ≡
∑

λi>1(λi − 1) (mod 2). Hence

k + ` ≡ k′ +
∑
λi>1

λi +
∑
λi>1

(λi − 1) ≡ k′ +
∑
λi>1

1,

which is exactly the number of cycles in the corresponding flow. Because permutations are a
bijection, each vertex of G is used at most once, so the corresponding flows are non-intersecting.
Therefore, because every cycle flow appears in the determinant exactly once,

det(I − A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i) =
∑

F∈F(G)

(−1)|F |wt(F ) = MII
C(G).

�

Lemma 2.4. Let G be an edge-weighted directed graph, and let A be its adjacency matrix. Then

− tr(log(I − A)) = MI
C(G).

Proof. For any k ∈ N, notice that tr(Ak) gives the sum of weights of all k-step cycles in G,
where cycles with different base points are counted independently. Any k-step cycle starting
at some vertex i1 can be written uniquely as (i1 i2 · · · ir)s, where the corresponding cycle is
i1 → i2 → · · · → ir → i1 → · · · , rs = k, and (i1 i2 · · · ir) is not a power of some smaller cycle.

Notice, however, that when disregarding base point, (i1 i2 · · · ir)s = (i2 · · · ir i1)s = · · · , so
in the sum tr(Ak) the weight of the cycle will be overcounted exactly r times. Dividing by k, the
weight of the cycle in tr(Ak)/k will be

r

k
· wt(i1 · · · ir)s =

wt(i1 · · · ir)s

s
.
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Since s is the multiplicity of this cycle, this shows that

tr(Ak)

k
=

∑
p∈Ck(G)

wt(p)

mult(p)
,

where Ck(G) is the set of all k-step closed walks in G (without regard to base points). Hence
∞∑
k=1

tr(Ak)

k
=
∑

p∈C(G)

wt(p)

mult(p)
= MI

C(G).

Since log(I − A) = −
∑∞

k=1
Ak

k
, we have

− tr ◦ log(I − A) = tr(− log(I − A)) = tr

(
∞∑
k=1

Ak

k

)
=
∞∑
k=1

tr(Ak)

k
= MI

C(G).

�

From two results we deduce our first important relation between type I and type II measurements.

Theorem 2.5. Let G be an edge-weighted directed graph. Then

MI
C(G) = − log(MII

C(G)).

Proof. Apply Lemmas 2.3 and 2.4, as well as the well-known identity tr ◦ log = log ◦ det. �

2.2. Application to toric networks. Applying Theorem 2.5 to the edge-weighted graph derived
from a network is almost enough to deduce algebraic relations between type I and type II mea-
surements on that network. However, we must modify the generating functions we defined in the
previous subsection so that they group measurements by homology class, as was specified in the
first section.

Fix a network N on a surface S, and let H = H1(S,Z) be its first homology group. In particular,
fix an identification polygon P for S, and let g1, . . . , ga be the generators of H corresponding to
the edges of P (so P is a 2a-gon). Fix orientations for the gi, and there is an induced isomorphism
h : H → Za that maps a directed subgraph D of N to a vector h(D) = (h1, . . . , ha), where hi is
the number of edges of D that cross the generator gi in the positive direction minus the number
that cross gi in the negative direction. Because h is well-defined on equivalence classes of paths
(resp. closed walks, cycles, flows), then we will write h[p] for the image of the path (resp. closed
walk, cycle, flow) class [p] under h.

Next we introduce generating functions for network measurements that are decorated according
to homology type. These will be Laurent series4 in the set of variables t = (t1, . . . , ta), and if
i = (i1, . . . , ia) ∈ Za, then we will use the notation ti for the monomial ti11 · · · tiaa . Now we define
the (homology-)decorated type I highway measurement generating function for N to be

MI
H(N , t) =

∑
[p]

M
[p]
H th[p],

where the sum is taken over all equivalence classes of boundary paths and closed walks [p] on
the network N . We define all other possible variants (type II, underway, etc.) of this generating
function completely analogously.

Now we want to modify the edge-weighted graphs GH(N ) and GU(N ) so that measurements on
these graphs will be decorated in a way that is consistent with the above definition of the decorated
generating function. In particular, let GH(N , t) be the graph GH(N ) embedded on P with the

4It should be emphasized that they are not necessarily formal Laurent series; i.e., a priori they may have infinitely
many nonzero terms of negative exponent.
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following modification: for each i, the weight of each edge that traverses the generator gi in the
positive (resp. negative) direction accrues a factor of ti (resp. t−1i ). We define GU(N , t) completely
analogously.

We would like to relate the decorated measurement generating functions to measurements on
these decorated graphs, in analogy with equations (1) and (2) above. However, our constructions
of generating functions for edge-weighted graphs only account for closed walk class measurments,
while the decorated measurement functions we have just defined include path class measurements.
In general, this is a subtle issue to resolve, but it is trivially handled in the case of (n,m, k)-torus
networks, since there are no boundary paths on these networks.

Hence we will now focus on this type of network for the remainder of this section. Fix integers
n,m ≥ 1, k ≥ 0, and let N be the (n,m, k)-torus. The next proposition gives the desired analogy
of (1) for the network N ; its proof is simply the observation made in the proceeding paragraph.

Proposition 2.6. Let N be the (n,m, k)-torus. Then

MI
C(GH(N , t)) =MI

H(N , t),

and similarly for the other types of measurements (type II, underway, etc.).

Earlier we noted thatMI
H(N , t) andMII

H(N , t) are generally Laurent series in t. However, things
are again much simpler for the (n,m, k)-torus.

Proposition 2.7. Let N be the (n,m, k)-torus. Then MI
H(N , t) and MII

H(N , t) are a formal
power series and a polynomial in t, respectively (and similarly for underway measurements).

Proof. Let N be a (n,m, k)-torus. We can orient the generators of the first homology group of the
torus so that every every subgraph of N crosses the generators only in the positive direction; hence
MI

H(N , t) and MII
H(N , t) are formal power series in t. In fact, the latter is a polynomial, since

there are only finitely many classes of cycle flows on N with nonzero highway measurement. �

By applying Propositions 2.6 and 2.7 and Theorem 2.5, we deduce the following proposition.

Proposition 2.8. Let N be the (n,m, k)-torus. Then we have

MI
H(N , t) = − log(MII

H(N , t)), (3)

and similarly for underway measurements.

Finally, this proposition allows us to prove Theorem 2.1.

Proof of Theorem 2.1. Equation (3) implies that each coefficient of MI
H(N , t) is expressible as

a finite algebraic combination of coefficients of MII
H(N , t), and vice versa. But the coefficients

of the former generate RI
H(N ), and the coefficients of the latter generate RII

H(N ). Therefore
RI
H(N ) = RII

H(N ). The analogous argument shows that RI
U(N ) = RII

U(N ). �

3. Relating Type II Highway and Underway Measurements

Fix integers n,m ≥ 1, k ≥ 0, and let N be the (n,m, k)-torus. We showed in the previous section
that RI

H(N ) = RII
H(N ) and RI

U(N ) = RII
U(N ). In this section we will show that RII

H(N ) = RII
U(N ),

which will in turn prove the mirror symmetry conjecture for this specific network. We do this by
constructing a weight-preserving bijection between the sets of highway flows and underway flows
that also preserves the homological equivalence of flows. This will show that the two rings are
generated by the same measurments, hence proving their equality.
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3.1. The flow complement. Let N be an arbitrary network on a surface. The flow complement
is an involution on F(N ), the set of flows on N . We define this involution by considering the local
picture of a flow at a vertex of N . If the vertex is an interior vertex, there are six possibilities:

(1) a single path may enter and exit via the highway;
(2) a single path may enter and exit via the underway;
(3) a single path may enter via the highway and exit via the underway;
(4) a single path may enter via the underway and exit via the highway;
(5) one path may enter via the highway and exit via the underway, while another path enters

via the underway and exits via the highway;
(6) no path traverses the vertex.

If the vertex is on the boundary of N , there are two possibilites:

(7) a single path exits (resp. enters) the source (resp. sink);
(8) no path exits (resp. enters) the source (resp. sink).

If F ∈ F(N ), the flow complement of F , denoted F c, is the flow whose local pictures are the
“complements” of the local pictures of F , where we define the complementary pairs of local pictures
to be: (1) and (2), (3) and (4), (5) and (6), and (7) and (8). It is a straightforward exercise to
check that this transformation is a well-defined involution on F(N ).

Example 3.1. Figure 3 shows a highway flow F on the (3, 4, 0)-torus and its complement. Note
how F c is a complement of F in N when we consider each object as a collection of edges.

Figure 3. To the left is a highway flow F on the (3, 4, 0)-torus consisting of a single
cycle. To the right is its complement.

Proposition 3.2. If F ∈ F(N ), then wtH(F ) = wtU(F c). In particular, the family complement
maps highway flows to underway flows and vice versa.

Proof. Note that the flow complement is locally weight-preserving. Because a flow’s weight is the
product over the weights of its components, the flow complement is globally weight-preserving. �

Since we group flow measurements by homology class, the following propostion is essential.

Proposition 3.3. Let F1, F2 ∈ F(N ). If F1 ∼ F2, then F c
1 ∼ F c

2 .

Proof. We use the setup and notation of subsection 2.2. Write h(N ) = (n1, . . . , na) ∈ Za, and let
F ∈ F(N ) be an arbitrary flow supported on the sources X ⊆ B+ and sinks Y ⊆ B−. Since F c

contains precisely the edges of N not in F , we have h[F c] = h(N )− h[F ], and we see that F c is
supported on the sources B+ rX and sinks B− r Y .

Now let F1, F2 ∈ F(N ) be arbitrary flows such that F1 ∼ F2, so h[F1] = h[F2] and F1, F2 are
supported on the same sources and sinks. From the above, it is easy to see that h[F c

1 ] = h[F c
2 ] and

that F c
1 , F

c
2 are supported on the same subsets of sources and sinks; hence F c

1 ∼ F c
2 . �

To summarize, the flow complement is a weight-preserving bijection between the sets of highway
flows and underway flows that also preserves the equivalence of flows.
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3.2. The mirror symmetry conjecture for the (n,m, k)-torus. Now let N be the (n,m, k)-
torus. Using the results of the previous subsection, we prove the following theorem.

Theorem 3.4. If N is the (n,m, k)-torus, then RII
H(N ) = RII

U(N ).

Proof. Let F ∈ F(N ) be a flow, and let h[F ] = (a, b) ∈ Z2. By Theorem 7.2 of [1], we have
sgn(F ) = (−1)ab−a−b. In particular, if F ′ ∈ F(N ) and F ′ ∼ F , then sgn(F ′) = sgn(F ). Therefore,
applying the results of the previous subsection, we see that the flow complement on N preserves

flow class measurments; i.e., M
[F ]
H = M

[F c]
H . Thus the rings RII

H(N ) and RII
U(N ) are generated by

precisely the same set of measurements, and hence they are equal. �

Putting together Theorems 2.1 and 3.4 now implies the Mirror Symmetry Conjecture for N .

Theorem 3.5. The mirror symmetry conjecture is true for any (n,m, k)-torus network.

4. The Mirror Symmetry Conjecture for Other Networks

Although we have proven the mirror symmetry conjecture only for (n,m, k)-torus networks,
many of the techniques we have developed in the previous sections can be applied in further
generality. However, alone they are not enough, and as of yet we do not have a proof of the
conjecture in full generality. In this section we approach a proof a general version of Theorem 2.1
by proposing the use of a theorem of Talaska, and we reduce the conjectural general version of
Theorem 3.4 to a single, simpler conjecture.

4.1. Generalizing Theorem 2.1. Although Theorem 2.5 holds for any directed graph, it is not
always meaningful to apply it to a homology-decorated graph as we did to prove Proposition 2.8.
This specialization worked for the (n,m, k)-torus precisely because of Propositions 2.6 and 2.7; i.e.,
the torus has empty boundary, so there are only closed walk and cycle flow measurements, and
the network is structured in such a way that the decorated type I and type II generating functions
are a polynomial and a formal power series in t, respectively.

In general, these generating functions will be a Laurent polynomial and a rational function in
t, respectively (Proposition 2.7 in [2]). In addition, on surfaces with nonempty boundary, there
may be boundary path class measurements as well to consider. Therefore, a proper generalization
of Theorem 2.5 must be able to account for boundary path class measurements (both individually
and within flows). Fortunately there is a result of Talaska [3] that together with Theorem 2.5
allows us to approach this desired generalization. Here we paraphrase the relevant definition and
theorem from her paper.

Definition 4.1 (Definition 2.1 in [3]). Let G be an edge-weighted directed graph, and fix an
ordering V (G) = {v1, . . . , vn} of its vertices. The weighted path matrix of G is the matrix Λ
whose entries `ij are the formal power series

`ij =
∑

p:vi vj

wt(p),

where the sum is over all directed paths from vi to vj.

Theorem 4.2 (Theorem 2.5 in [3]). Suppose G is an edge-weighted directed graph with weighted
path matrix Λ. Then the minor ∆X,Y (Λ), with rows indexed by X ⊆ V (G) and columns indexed
by Y ⊆ V (G), is given by

∆X,Y (Λ) =

∑
F∈FX,Y (G)

sgn(F ) wt(F )∑
F ′∈FC(G)

sgn(F ′) wt(F ′)
,
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where FX,Y (G) is the collection of flows whose components connect the vertices X to the vertices
Y in G (i.e., path flows) and FC(G) is the collection cycle flows on G.

We would like to apply this theorem to prove an analogue of Proposition 2.8 for general networks
on surfaces; the following is a proposal of how to accomplish this.5 First, let N be a network on
a surface, and fix an ordering of its boundary vertices, B = {v1, . . . , vn}. Define the decorated
weighted path matrix for N , written ΛH(N , t), to be the matrix whose entries λij are given by

λij =
∑

[p]:vi vj

M [p]th[p].

Next we define two more generating functions in analogy to the decorated type II measurement
generating functionMII(N , t) we defined in Section 2, except here we restrict our attention to spe-
cific collections of flows. First, we define the decorated cycle flow measurement generating
function MII

C(N , t) simply by only summing over cycle flows. Second, we define the decorated
X, Y -path flow measurement generating functionMII

X→Y (N , t) by only summing over path
flows supported on the subsets X ⊆ B+, Y ⊆ B−.

Based on Theorem 4.2, we expect there to be a result of the following form: if X ⊆ B+, Y ⊆ B−,
then the minor ∆X,Y (ΛH(N , t)), with rows indexed by X and columns indexed by Y , is given by

∆X,Y (ΛH(N , t)) =
MII

X→Y (N , t)

MII
C(N , t)

.

By multiplying through by the denominator on the right-hand side and then using Proposition 2.8
(or an appropriate analogue), one could possibly extract algebraic relations among the coefficients
of these generating functions that would allow one to imitate the proof of Theorem 2.1. In an ideal
world, this approach would lead one to prove the following conjecture.

Conjecture 4.3. If N is any network on any surface, RI
H(N ) = RII

H(N ) and RI
U(N ) = RII

U(N ).

One final word of caution regarding this proposed approach. In all of the above manipulations
of generating functions, one must make sure that the relations among the generating functions
are formally meaningful. For instance, some of these relations may be nonsensical for generating
functions that are only Laurent series in t (not power series, or polynomial). In considering this
issue, we refer the reader to Conjecture 4.1 in [2], which may be useful.

4.2. Generalizing Theorem 3.4. In our proof of Theorem 3.4, we appealed to a result in [2]
that allowed us to conclude that on an (n,m, k)-torus, the sign function is constant on flow classes.

This allowed us to deduce that M
[F ]
H = M

[F c]
H , and hence that RII

H(N ) and RII
U(N ) are generated

by the same set of measurements.
In general the sign function is not constant on flow classes, as the following example shows.

Example 4.4. In Figure 4, the two flows drawn in red connect the same sources and sinks, and they
trivially define the same homology class; hence they are equivalent. However, the permutations
they induce B+ → B− (from sources to sinks) differ by a single transposition, and so the two flows
have different signs. Nevertheless, their complements (drawn in blue) also have different signs.

Perhaps the non-constancy of the sign function on flow classes on general networks seems to suggest
that, in general, one must group flow measurements by a finer equivalence relation. However, the
above example suggests that sign discrepancies may behave well under flow complementation.
Namely, we are led to the following conjecture.

5In what follows, we define everything in terms of highway measurements, ommitting the subscript H to simplify
notation. The corresponding definitions for underway measurements are completely analogous.
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Figure 4. A network on a surface that is homeomorphic to a disk. Two equivalent
flows are shown in red; their complement flows (also equivalent) are shown in blue.

Conjecture 4.5. Let N be any network on any surface. If F1, F2 ∈ F(N ) and F1 ∼ F2, then

sgn(F1) sgn(F2) = sgn(F c
1 ) sgn(F c

2 ).

Let N be an arbitrary network on a surface. The truth of this conjecture would show that the
relative parities (i.e., values of sgn) of flow measurements for the members of a given flow class is

preserved under complementation. We would then deduce M
[F ]
H = ±M [F c]

H for any flow F ∈ F(N ),
and consequently the rings RII

H(N ) and RII
U(N ) would have the same set of generators (up to sign).

In other words, we have observed that the previous conjecture implies the following one.

Conjecture 4.6. Let N be any network on any surface. Then RII
H(N ) = RII

U(N ).

Proving this conjecture as well as Conjecture 4.3 would in turn resolve the mirror symmetry
conjecture for all networks on surfaces.
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