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1. Introduction

In [2][3], the mathematicians Fomin and Zelevinsky described the mathematical
object known as a quiver, and connected it with the theory of cluster algebras. In
particular, each quiver can be represented by a seed of a cluster algebra, which
couples a set of n variables with the adjacency matrix of the quiver. By performing
a transformation on the quiver, we change accordingly the values of these variables
in the cluster algebra.
In this paper, we will show the patterns generated by several such transformations,
most notably those involving the particular quiver shown here. We will be demon-
strating relations between our quiver mutations and the Fibonacci numbers.
We begin with a few simple definitions.

Definition 1. A quiver is a directed graph where multiple edges are allowed between
each pair of nodes. It may also contain loops; however, the quivers we will be
examining will not. We will call the vertices of this graph nodes.

Definition 2. We define mutation of a quiver Q with nodes {1, ..., n} in a similar
way as seen in this paper: [1]. Thus, when we mutate a quiver at a node k, we
perform the following steps:
1. For every pair of nodes i, j 6= k, every edge from i to k, and every edge from k
to a j, we create an edge from i→ j.
2. We reverse the direction of any edges touching k.
3. In the graph resulting from the above two steps we remove both edges of any
2-cycles we see.

Then, between each two nodes i and j, we may have a variable aij which is the
number of directed arrows from i to j. If this variable is negative, it will mean
there are only arrows from j to i. We notice aij = −aji.
One critical aspect of mutation that we will take note of is that mutating a quiver
twice around the same node will always return us to the original quiver; that is,
mutation is an involution transformation.

Definition 3. A cluster algebra is a commutative ring consisting of elements called
seeds. These seeds contain a element of Rn coupled with a n×n matrix; this is the
matrix that represents the quiver.

We attach a cluster variable xk to each node k of the quiver, which gives us a
cluster algebra seed. Then, when we mutate the quiver at a vertex k, we change
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the variable xk associated with k to

x′k =

∏
i→k xi +

∏
k→j xj

xk
.

If we originally start with the cluster seed C = {[x01, ..., x0n], Q}, then, it can be
shown [citation] that each variable of the cluster seed C = {[x1, ..., xn], Q} obtained
after any finite sequence of mutations is a Laurent polynomial. As we will see, this
definition of cluster variable leads to many interesting patterns in the mutations.

Definition 4. A Laurent polynomial in the variables x1, ..., xn is an expression
where each monomial is the product of integral (positive and negative) powers of
x1, ..., xn.

Fomin and Zelevinsky have shown that the polynomials obtained while mutat-
ing a quiver continue to be Laurent polynomials. [7] These two mathematicians
have titled this the ”‘Laurent phenomenon”’, as normally the composition of two
such polynomials may well cease to be a Laurent polynomial. The values of such
polynomials, with appropriate numbers substituted in for the variables, may take
on various mathematically significant numbers.

2. Quiver Mutations

We consider the quiver Q =

and the cluster algebra seed S = ([1, 1, 1, 1], Q). Then we mutate this in the direc-
tions 1, 3, 2, 3, 2, 3, .... Let Qn denote the quiver obtained after n mutations in the
sequence [ 1,3,2,3,2,3, ...], with Q0 = Q drawn above. Let an denote the number
resulting from n mutations along this sequence, we then have the sequence of ans
as

1, 2, 2, 8, 40, 208, 1088, 5696, 29824, 156160, ...

We thus conjecture that

Theorem 1. When n ≥ 2, an = 2n−1 · F2n−4, when we take F0 as the start of the
Fibonacci sequence.

We shall first determine the form of the quiver associated with an. After finding
the number of arrows between each two vertices in Qn for all n, we will then mutate
and apply induction to the formula to complete the proof of the theorem. Since
the mutation pattern has a repeating block of 2 mutations, we will split each proof
into odd and even cases. Define (cn)i,j to be the number of arrows from i → j in
the quiver Qn. We claim that when m ≥ 3, then



QUIVER MUTATIONS 3

Lemma 1. (c2m−1)0,1 = 6, (c2m−1)2,3 = 2
(c2m−1)3,0 = 4m− 10, (c2m−1)1,2 = 4m− 6
(c2m−1)3,1 = 4m− 4, (c2m−1)0,2 = 4m− 12,
while
(c2m)0,1 = 6, (c2m)3,2 = 2
(c2m)0,3 = 4m− 10, (c2m)2,1 = 4m− 2
(c2m)1,3 = 4m− 4, (c2m)2,0 = 4m− 8.

The following diagram shows the first few mutations of the quiver according to
the sequence.

Proof. The proof of this uses induction. We first see from the figure above that it
holds in the case of a5 and a6.
Suppose it is true for a2m−1. Then Q2m follows from Q2m−1 by mutating at 3.
Since Q2m−1 is given above, we get that Q2m reverses directions of all arrows at 3.
By this, we obtain that (c2m)0,3 = 4m − 10, (c2m)3,2 = 2, and (c2m)1,3 = 4m − 4,
since the number of arrows from 3 to any other point will not change.
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We also find that this mutation adds 2(4m− 10) arrows from 2 to 0 and 2(4m− 4)
arrows from 2 to 1, while no arrows between 0 and 1 are changed. Thus, (c2m)0,1 =
6, (c2m)2,1 = 4m− 2, and (c2m)2,0 = 4m− 8.
Now, we will induct from a2m to a2m+1.
Then Q2m+1 follows from Q2m by mutating at 2. Since Q2m is given above, we
get that Q2m+1 reverses directions of all arrows at 2. By this, we obtain that
(c2m+1)2,3 = 2, (c2m+1)0,2 = 4m− 8, and (c2m+1)1,2 = 4m− 2, since the number of
arrows between 3 and any other point will not change during this mutation process.
Meanwhile, this mutation adds 2(4m− 8) arrows from 3 to 0 and 2(4m− 2) arrows
from 3 to 1, leaving the number of arrows between 0 and 1 unchanged. Thus,
(c2m+1)0,1 = 6, (c2m+1)3,0 = 8m − 16 − (4m − 10) = 4m − 6, and (c2m+1)3,1 =
8m− 4− (4m− 4) = 4m.
Therefore, the inductive hypothesis holds, and we have proved the lemma. �

Now, we want to show that the sequence generated by such a mutation is in
accordance with what we conjectured.

Proof. We know that

x′k =

∏
i→k xi +

∏
k→j xj

xk
.

To show that an is the number we desire, we have two cases we must confirm: that
when n is odd and that when n is even. Our base case will be a5 and a6.

Case 1. When n is even, then n = 2m and an is obtained by mutating Q2m−1 at
3. Thus

an =
x2
2 + x4m−10

0 x4m−4
1

x3

=
a2n−1 + 24m−4

an−2

=
(2n−2F2n−6)2 + 22n−4

2n−3F2n−8

= 2n−1
F 2
2n−6 + 1

F2n−8

= 2n−1F2n−4

as desired.

Case 2. When n is odd, then n = 2m+1 and an is obtained by mutating the quiver
associated with a2m at 2. Thus

an =
x2
3 + x4m−2

1 x4m−8
0

x2

=
a2n−1 + 24m−2

an−2

=
(2n−2F2n−6)2 + 22n−4

2n−3F2n−8

= 2n−1
F 2
2n−6 + 1

F2n−8

= 2n−1F2n−4
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as desired.

�

In fact, we may state that

Theorem 2. Mutating in the directions 1, 3, 2, 3, 2, 3, ... generates the same cluster
variable values as above for any quiver in this family:

Proof. To show this, we consider what would happen if we combined the two vertices
n− 1, n on the graph with n vertices into one, call it ∗. Then when we mutate the
new quiver, we would get as many edges i → ∗ as we would the sum of i → n − 1
and i → n, by the distributive property. Similarly, we get the same edges ∗ → j.
Since the original had xn−1 = xn = 1 for the cluster variables, it follows that we
get the same sequence. �

Since the sequence of an’s come from mutating Q by the specific sequence
1, 3, 2, 3, 2, 3, ..., by comparing the above results to InJee Jeong’s verification of
Musiker’s conjecture [6], we get that the an’s give the number of perfect matchings
in the following sequence of figures.

3. Explorations of Other Mutation Sequences

We remain using the following quiver:
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Let ω be a sequence of the numbers 2 and 4. Let ω̄ denote the reverse sequence
of ω. We may assume ω has no two consecutive 2s or 4s, because mutation is an
involution. Then for any such sequence ω, mutating the quiver by the sequence

1, ω, 1, 3, 1, 3, ω̄, 3

will lead to the reverse quiver. This is because after we mutate by 1, we get the
resulting quiver

and mutating by ω makes the resulting graph symmetric with respect to the diag-
onal shown in this figure.

This results in the mutations 1 and 3 commuting with respect to each other, and
thus mutating 1,3,1,3 leaves the graph unchanged. Then ω̄ will return the quiver,
leaving this sequence with a result the same as if we just mutated 1,3.
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