REU PROBLEM: NONCROSSING TREE PARTITIONS AND SHARD INTERSECTIONORDERS

ALEXANDER GARVER

CONTENTS

1. Lattices 1
2. Shellability 1
3. Noncrossing Tree Partitions 2
4. Shard Intersection Order of Biclosed Sets 2

A set partition \(B = (B_1, \ldots, B_r) \) of \([n] := \{1, \ldots, n\}\) is a family of subsets \(B_i \in [n] \) where \(B_i \cap B_j = \emptyset \) and \(\cup_{i=1}^r B_i = [n] \). A partition \(B \) is noncrossing if no two of its blocks have \(i, k \in B_s, j, \ell \in B_t \) s.t. \(i < j < k < \ell \). Let \(\#NC(n) \) denote the number of noncrossing partitions of \(n \).

It is a classical result that \(\#NC(n) = C_n := \frac{1}{n+1} \binom{2n}{n} \). The number \(C_n \) is known as the \(n \)th Catalan number.

1. Lattices

A poset (or partially ordered set) is set \(P \) and a relation \(\leq \) called a partial order that satisfies

- \(x \leq x \),
- if \(x \leq y \) and \(y \leq x \), then \(x = y \), and
- if \(x \leq y \) and \(y \leq z \), then \(x \leq z \)
for any \(x, y, z \in P \). We will write \(P \) instead of \((P, \leq)\), unless it is not clear which partial order on \(P \) is being used.

A subset \(C \) of \(P \) is called a chain if any two elements of \(C \) are comparable (under the partial order on \(P \)). The chain \(C \) is maximal if it is not contained in any larger chain of \(P \).

A lattice \(L \) is a poset where any \(x, y \in L \) have a join and a meet. A join (resp. meet) of \(x \) and \(y \), denoted \(x \lor y \in L \) (resp. \(x \land y \)), must satisfy the following

- \(x, y \leq x \lor y \) (resp. \(x \land y \leq x, y \)) and
- if \(z \in L \) where \(x \leq z \) and \(y \leq z \) (resp. \(z \leq x \land y \)), then \(x \lor y \leq z \) (resp. \(z \leq x \land y \)).

We will only consider finite lattices and posets. All finite lattices have a unique maximal (resp. minimal) element, denoted \(\hat{1} \) (resp \(\hat{0} \)). Ask students why.

2. Shellability

Assume that \(P \) is finite poset, that all maximal chains of \(P \) are of the same length \(r \), and that \(\hat{0}, \hat{1} \in P \) (\(P \) is a finite graded poset). Let \(\text{Cov}(P) := \{(x, y) \in P^2 : x \rightarrow y \text{ in } P\} \) be the set of covering relations of \(P \). A map \(\lambda : \text{Cov}(P) \rightarrow Q \) where \((Q, \leq_Q) \) is some poset is called an \(n \)th (edge) labeling. A maximal chain \(C = c_1 < \cdots < c_{r+1} \) of \(P \) is increasing if \(\lambda(c_1, c_2) \leq_Q \cdots \leq_Q \lambda(c_r, c_{r+1}) \). Given two maximal chains \(C = c_1 < \cdots < c_{r+1} \) and \(C' = c'_1 < \cdots < c'_{r+1} \) in \(P \), we say \(C \) is lexicographically smaller than \(C' \) if \((\lambda(c_1, c_2), \ldots, \lambda(c_r, c_{r+1})) \) lexicographically precedes \((\lambda(c'_1, c'_2), \ldots, \lambda(c'_{r}, c'_{r+1})) \).

Definition 2.1. A labeling \(\lambda : \text{Cov}(P) \rightarrow Q \) is an EL-labeling (or edge lexicographical labeling) of \(P \) if for every interval \([x, y] := \{z \in P : x \leq z \leq y\} \) of \(P \),

i) there is a unique increasing maximal chain \(C \) in \([x, y] \), and
ii) \(C \) is lexicographically smaller than any other maximal chain \(C' \) in \([x, y] \).

If \(P \) admits an EL-labeling, it is said to be EL-shellable.

Theorem 2.2 (Björner). Let \((B, B') \in \text{Cov}(\text{NC}(n))\) and let \(B_i, B_j \in B \) be the blocks that are merged to produce \(B' \). Then the labeling \(\lambda : \text{Cov}(\text{NC}(n)) \rightarrow [n] \) defined by \(\lambda(B, B') := \max\{\min(B_i, \min(B_j)\} \) is an EL-labeling. Thus the lattice \(\text{NC}(n) \) is EL-shellable.
3. Noncrossing Tree Partitions

Let T be a tree embedded in the disk D^2 in such a way that a vertex of T lies on the boundary of D^2 if and only if that vertex is a leaf of T. The tree T has boundary vertices and interior vertices.

The tree T has an important set of subgraphs, which we will call segments. A segment $s = (v_0, \ldots, v_t) = [v_0, v_t]$ with $t \geq 1$ is a sequence of interior vertices of T that turn sharply at v_i for each $1 \leq i \leq t - 1$. A vertex of T is not a segment. Let $\text{Seg}(T)$ denote the set of segments of T.

A red admissible curve $\gamma : [0, 1] \to D^2$ for a segment $s = [v_0, v_t]$ is a simple curve where

- its endpoints are v_0 and v_t,
- γ may only intersect edges of T of the form (v_{i-1}, v_i) where $i \in [t]$, and
- γ must leave its endpoints “to the right.”

Two segments are noncrossing if they admit red admissible curves that do not intersect.

A noncrossing tree partition $B = (B_1, \ldots, B_k)$ is a set partition of the interior vertices of T where

- there is a (unique) set of segments $\text{Seg}_r(B_i) \subset \text{Seg}(T)$ connecting the vertices in B_i and any two segments in $\text{Seg}_r(B_i)$ may agree only at their endpoints and
- any segments $s_1 \in \text{Seg}_r(B_i)$ and $s_2 \in \text{Seg}_r(B_j)$ are noncrossing.

Theorem 3.1 (G.–McConville). The set $\text{NCP}(T) := \{\text{noncrossing tree partitions of } T\}$ partially ordered by refinement (i.e. if $B = (B_1, \ldots, B_k) \leq B' = (B_1, \ldots, B'_l)$, then each block B_i is contained in some B'_j) is a lattice.

Exercise 3.2. Find a tree T where

a) $\#\text{NCP}(T)$ is not equal to any Catalan number

b) $\#\text{NCP}(T)$ is equal to a Catalan number, but $\text{NCP}(T) \not\cong \text{NC}(n)$ for any n.

Problem 3.3. Let T be a tree embedded in a disk with n interior vertices so that the rank of $\text{NCP}(T)$ is $n - 1$.

a) Show that $\text{NCP}(T)$ is EL-shellable.

b) Find a formula for the number of maximal chains of $\text{NCP}(T)$.

Remark 3.4. By Problem 3.3, the simplicial complex $\Delta \left(\overline{\text{NCP}(T)} \right)$ will be homotopy-equivalent to a wedge of $(n - 3)$-dimensional spheres. The number of such spheres will be $\#\{\text{maximal chains of } \text{NCP}(T)\} - 1$.

4. Shard Intersection Order of Biclosed Sets

A tree T defines another lattice whose combinatorics we want to further understand.

Two segments s_1 and s_2 are composable if $s_1 \circ s_2 \in \text{Seg}(T)$. A set $B \subset \text{Seg}(T)$ is closed if for any composable segments $s_1, s_2 \in B$, one has that $s_1 \circ s_2 \in B$. We say B is biclosed if B and $\text{Seg}(T) \setminus B$ are closed. Let $\text{Bic}(T)$ denote the set of biclosed sets of T partially ordered by inclusion.

We introduced the lattice of noncrossing tree partitions $\text{NCP}(T)$ in order to describe the shard intersection order of $\overline{\text{FG}}(T)$. Now we want to understand the shard intersection order of $\text{Bic}(T)$.

Exercise 4.1. Let $B_1, B_2 \in \text{Bic}(T)$.

a) Describe $B_1 \vee B_2$.

b) Use a) to show that $\text{Bic}(T)$ is a lattice.

Theorem 4.2 (G.–McConville). The lattice $\text{Bic}(T)$ is a congruence-uniform lattice (i.e. it can be constructed from the one element lattice by a finite sequence of interval doublings (this definition is a result of Day)). Also, it is graded by cardinality of biclosed sets.
Proposition 4.3 (essentially Reading). A lattice is congruence-uniform if and only if it admits a CU-labeling.

Definition 4.4. A labeling \(\lambda : \text{Cov}(L) \to Q \) is a CN-labeling if and dual \(L^* \) satisfy the following: For elements \(x, y, z \in L \) with \((z, x) \in \text{Cov}(L) \) and maximal chains \(C_1 \) and \(C_2 \) in \([z, x \lor y] \) with \(x \in C_1 \) and \(y \in C_2 \),

(CN1) the elements \(x' \in C_1, y' \in C_2 \) such that \((x', x \lor y), (y', x \lor y) \in \text{Cov}(L) \) satisfy
\[
\lambda(x', x \lor y) = \lambda(z, y), \quad \lambda(y', x \lor y) = \lambda(z, x);
\]
(CN2) if \((u, v) \in \text{Cov}(C_1) \) with \(z < u, v < x \lor y \), then \(\lambda(z, x), \lambda(z, y) < Q \lambda(u, v) \);
(CN3) the labels on \(\text{Cov}(C_1) \) are pairwise distinct.

We say that \(\lambda \) is a CU-labeling if, in addition, it satisfies
(CU1) for any elements \(j, j' \in L \) that cover unique elements \(j_*, j'_* \in L \), respectively, one has that \(\lambda(j_*, j) \neq \lambda(j'_*, j') \);
(CU2) for any elements \(m, m' \in L \) that are covered by unique elements \(m^*, m'^* \in L \), respectively, one has that \(\lambda(m, m^*) \neq \lambda(m', m'^*), \)

Theorem 4.5 (G.–McConville). The labeling \(\lambda : \text{Cov}(\text{Bic}(T)) \to \text{Seg}(T) \) defined by \(\lambda(B, B \sqcup \{s\}) = s \) is a CN-labeling (here \(\text{Seg}(T) \) has the partial order \(s_1 \leq_{\text{Seg}(T)} s_2 \) if \(s_1 \) is a subsequence of \(s_2 \)).

Remark 4.6. Someone should present the part of Oriented Flip Graphs & Noncrossing Tree Partitions about the shard intersection order of \(\Psi(L) \). They should explain the CU-labeling of \(\Psi(L) \) that we construct and how it is intrinsic to \(\text{FG}(T) \).

Remark 4.7. Someone should present Petersen’s On the shard intersection order of a Coxeter group paper (using some basic definitions from Reading’s Noncrossing partitions the shard intersection order).

Definition 4.8 (Reading). Let \(L \) be a congruence-uniform lattice with CU-labeling \(\lambda : \text{Cov}(L) \to P \). Let \(x \in L \) and let \(y_1, \ldots, y_k \) be the elements of \(L \) satisfying \((y_i, x) \in \text{Cov}(L) \). Define the shard intersection order of \(\Psi(L) \) to be the collection of sets of the form
\[
\psi(x) := \{ \text{labels appearing between } \bigwedge_{i=1}^k y_i \text{ and } x \} = \{ \lambda(w, z) : \bigwedge_{i=1}^k y_i \leq w < z \leq x, (w, z) \in \text{Cov}(L) \}
\]
partially ordered by inclusion.

Problem 4.9. Describe the shard intersection order of \(\text{Bic}(T) \).

a) Construct a CU-labeling \(\lambda : \text{Cov}(\text{Bic}(T)) \to S \) where \(S \) is variation of the poset Seg(T).

b) Is \(\Psi(\text{Bic}(T)) \) a lattice?

b) Is it EL-shellable?