Let's start with triangulations of an n-gon.
This gives a bijection between triangulations of \((n+2)\)-gons and binary trees with \(n\) nodes.
Now add all possible children ...

... so they are also in bijection with complete binary trees with $n+1$ leaves.
How to count them?
Partition the leaves in the complete binary tree according to the left- and right-subtrees below the root.

![Diagram of a complete binary tree with leaves partitioned into two subtrees.]

complete binary tree with \(k \) leaves

some with \(n+1-k \) leaves

for some \(k=1,2,\ldots,n \)

Hence \(c_n = \# \text{ complete binary trees with } n+1 \text{ leaves} \)

satisfies \(c_n = \sum_{k=0}^{n-1} c_k c_{n-k-1} \)

(note re-indexing)
Base case: \(\text{C}_0 = 1 \)

\[
\begin{array}{c|c|c|c|c|c|c|}
 n & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\text{C}_n & 1 & 1 & 2 & 5 & 14 & 42 \\
\end{array}
\]

\[\text{C}_n = \text{the } n^{th} \text{ Catalan number} \]

\[n + 1 \binom{2n}{n} \]

Not obvious; well-known. See e.g. Wikipedia

There are over 200 objects counted by Catalan numbers; see Stanley's book "Catalan Numbers"

E.g. Dyck paths
DEF'N: A Dyck path is a walk from \((0,0)\) to \((n,n)\) in \(\mathbb{Z}^2\) taking unit steps up (U) and right (R), staying weakly above \(y=x\).

e.g. \(n=3\)

- URURUR
- URUURR
- UURRUR
- UURURR
- UUURRR
DEF: A rooted planar tree is a rooted tree in which each vertex has a linear ordering (left to right) of its children.

E.g. \[\begin{array}{c} \text{\textbf{\textless}} \\
\text{\textgreater} \end{array} \neq \begin{array}{c} \text{\textbf{\textgreater}} \\
\text{\textless} \end{array} \]

They biject with Dyck words, via the planar code of the RPT.
You get the planar code by starting at the root and walking around the tree, recording:
- U when moving away from root,
- R when moving toward the root.

E.g.

```
URUUURUURURURRRURURRR
```
There is a bijection from binary trees to Dyck paths (omitted here).

REU Exercise 12

Describe a bijection

\[
\{2 \times n \text{ standard Young tableaux}\} \leftrightarrow \{321\text{-avoiding permutations in } S_n\}
\]

(a filling of \(n \choose 2 \))

with 1, 2, ..., 2n each appearing exactly once, increasing in rows and columns

\[
\begin{array}{c}
\text{e.g.} \\
\text{n=5} \\
12458 \\
347910
\end{array}
\]

\(\pi=\pi_1\pi_2\ldots\pi_n\)

having no \(i<j<k\) with \(\pi_k>\pi_j>\pi_i\)

\(\pi=24351\) fails

\(12345\) \(\{\) OK

\(13254\) \(\}\)
One more set of objects...

DEF’N: A rigged configuration is a partition \(\lambda \) together with integers \(J_i \) for each part \(\nu_i \) of \(\nu \), satisfying \(0 \leq J_i \leq P_i \), where \(P_i \) is the \(i \)th vacancy number:

\[
2n - 2 \sum_{j} \min(\nu_j, \nu_i)
\]

The sum counts these boxes.
The vacancy numbers:

Example:

\[
\begin{array}{|c|c|}
\hline
0 & 1 \\
\hline
2 & 0 \\
\hline
\end{array}
\]

=

\[
\begin{array}{|c|c|}
\hline
0 & 0 \\
\hline
0 & 1 \\
\hline
\end{array}
\]

The rigging:

- It associates a multiset of values to each part size.

Example:

\[
\begin{array}{|c|c|c|}
\hline
0 & 0 \\
\hline
8 & 5 & 5 \\
\hline
20 & 10 \\
\hline
34 & 5 & 5 & 1 \\
\hline
\end{array}
\]

May as well reorder weakly decreasing.
Multiplicity notation:
\[V = 1^{m_1} 2^{m_2} 3^{m_3} \ldots \]
means \(V \) has \(m_3 \) parts of size 3
\[P_e = 2n - 2 \sum_i m_i \min(i, l) \]
(= vacancy number for all parts \(2i - l \))

There is a fermionic formula
\[c_n = \sum_{V \uparrow \varnothing} \prod_{l=1}^{\infty} \left(\frac{m_l + p_l}{m_l} \right) \]
“\(V \) is a partition of \(n \)”
which, using the fact that
\[\binom{a+b}{a} = \# \left\{ \text{multisets of size } a \text{ from } \{0, 1, \ldots, b\} \right\} \]
... suggests the following.

CLAIM: There is a bijection

\[
\begin{array}{c}
\text{RC} \\
\xrightarrow{\Psi} \\
\text{RPT}
\end{array}
\]

given by reading the RC from top to bottom, adding a path of length \(2i\) at the \(j_i\)-th possible position.

E.g.
(Sorry, note-taker got a little lost at this next stage ...)

The key issue is in the numbering of the possible positions (purple) when adding the group of next smallest parts.
Given the Dyck word, define at the kth stage of the bijection Φ

$$P_l = k - 2 \sum_{i} \min(v_i, l)$$

and define Φ recursively by adding a box to the longest row of v such that $J_i = P_i$ (which we call singular) and keep the row singular if we add R, and do nothing for U.

\[\Phi : D_n \rightarrow RC_n \]
e.g.

\[
\begin{align*}
\emptyset & \xrightarrow{U} \emptyset \\
& \xrightarrow{R} \quad 0 \\
U & \xrightarrow{ } 1 \\
& \xrightarrow{ } 2 \\
R & \xrightarrow{ } 1 \\
& \xrightarrow{ } 2 \\
U & \xrightarrow{ } 3 \\
& \xrightarrow{ } 2 \\
R & \xrightarrow{ } 2 \\
& \xrightarrow{ } 1 \\
\end{align*}
\]
Can check

\[\begin{array}{ccc}
0 & 2 & 0 \\
2 & 1 & 0 \\
\end{array} \quad \Psi \rightarrow \begin{array}{c}
\uparrow \\
\downarrow \mathrm{planar} \\
\mathrm{code} \\
\end{array} \]

\[
\text{URUURURRRUR}
\]

THM (Reynolds '15)
This diagram commutes

\[
\begin{array}{c}
\Phi \\
\end{array} \quad \Downarrow \mathrm{planar} \\
\mathrm{code} \quad \begin{array}{c}
\Phi \quad D \\
\end{array}
\]

\[
\begin{array}{c}
\Psi \\
\end{array} \quad \begin{array}{c}
\downarrow \mathrm{planar} \\
\mathrm{code} \\
\end{array} \quad \begin{array}{c}
\downarrow \mathrm{planar} \\
\mathrm{code} \\
\end{array}
\]

RC \rightarrow RPT
REU EXERCISE 13

Show Ψ, Φ are bijections
(directly, without using Reynolds's Thm)

Two statistics on Dyck paths

Area = # full boxes under the Dyck path

Bounce = the sum of the positions of the bounce path
Area = 8 (\# of boxes marked x)

Bounce = 1+2+5 = 8

The green bounce path bounces off the red Dyck path and off the diagonal y=x.
DEF. N: The \((q, t)\)-Catalan number

\[C_n(q, t) := \sum_{d \in D_n} \frac{\text{area}(d) \cdot \text{bounce}(d)}{t} \]

THM (Garsia, Haglund et al)

\[C_n(q, t) = C_n(t, q) \]

OPEN PROBLEM (Not REU!)

Prove this combinatorially.

Their proof is algebraic.
REU PROBLEM 5

Determine area and bounce on RC's under Φ, i.e.
find statistics α, β such that

area $= \alpha \circ \Phi$
bounce $= \beta \circ \Phi$

REU EXERCISE 14

(i) Find a bijection
[complete binary trees] \leftrightarrow RPT

(ii) Find the definition of area on RPT under planar code.