A Rule of Three for Schur Q-functions

Ewin Tang

August 2, 2017
Outline

- Rule of Three
- Schur Q-functions
- Results and Approach
Notation

\(e_k\)'s are elementary symmetric polynomials:

\[
e_k(x_1, \cdots, x_n) = \sum_{1 \leq j_1 < \cdots < j_k \leq n} x_{j_k} \cdots x_{j_1}
\]

\(h_k\)'s are homogeneous symmetric polynomials:

\[
h_k(x_1, \cdots, x_n) = \sum_{1 \leq j_1 \leq \cdots \leq j_k \leq n} x_{j_1} \cdots x_{j_k}
\]

For \(x_1, \ldots, x_n\) and \(S \subset [n]\) with \(S = \{s_1 < s_2 < \cdots < s_k\}\):

\[
[x, y] = xy - yx
\]

\[
e_i(x_S) = e_i(x_{s_1}, \ldots, x_{s_k})
\]

\[
x_S = x^\downarrow_S = x_{s_k} x_{s_{k-1}} \cdots x_{s_1}
\]
What is a Rule of Three?

Kirillov 2016:

Theorem (1.1)

For \(u = (u_1, \ldots, u_n) \) and \(v = (v_1, \ldots, v_n) \) tuples of elements in a ring \(R \), the following are equivalent:

- \([e_k(u_S), e_\ell(v_S)] = 0 \) for any \(k, \ell, S \subset [n] \),
- the above holds for \(|S| \leq 3 \) and \(k\ell \leq 3 \); that is,

\[
\begin{align*}
[e_1(u_S), e_1(v_S)] &= 0 \\
[e_1(u_S), e_2(v_S)] &= 0 \\
[e_2(u_S), e_1(v_S)] &= 0 \\
[e_1(u_S), e_3(v_S)] &= 0 \\
[e_3(u_S), e_1(v_S)] &= 0
\end{align*}
\]
Consider $u = v = (a, b, c)$. Then we have the following relations for $S = \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}$.

\[
\begin{align*}
[e_1(u_S), e_1(v_S)] &= 0 \\
[e_1(u_S), e_2(v_S)] &= 0 \\
[e_2(u_S), e_1(v_S)] &= 0 \\
[e_1(u_S), e_3(v_S)] &= 0 \\
[e_3(u_S), e_1(v_S)] &= 0
\end{align*}
\]
Example (cont.)

\[(a + b)(ba) - (ba)(a + b)\]
\[(a + c)(ca) - (ca)(a + c)\]
\[(b + c)(cb) - (cb)(b + c)\]
\[(a + b + c)(cb + ca + ba) - (cb + ca + ba)(a + b + c)\]
\[(a + b + c)(cba) - (cba)(a + b + c)\]
Example (cont.)

\[\begin{align*}
\text{aba} + \text{bba} - \text{baa} - \text{bab} \\
\text{aca} + \text{cca} - \text{caa} - \text{cac} \\
\text{bcb} + \text{ccb} - \text{cbb} - \text{cbc} \\
\text{acb} + \text{bca} - \text{cab} - \text{bac} \\
\text{acba} + \text{caba} - \text{cbca} - \text{cbac}
\end{align*}\]

These must generate all of \([e_k(u_S), e_\ell(u_S)]\).
Fomin-Greene 2006:

Theorem

If nonadjacent variables commute (or satisfy the non-local Knuth relations) and adjacent variables \(a < b \) satisfy

\[
[e_1(a, b), e_2(a, b)] = 0
\]

then noncommutative Schur functions behave as if they were ordinary Schur functions.
More Rules of Three

Blasiak and Fomin 2016 generalized to:

- Super elementary symmetric polynomials
- Generating functions over rings
- Sums and products
Problem

Can we use this theory to give rules of three in other settings?
Definition by Analogy

Schur functions : semistandard Young tableaux ::
Schur Q-functions : semistandard shifted Young tableaux
Definition
A (semistandard) shifted Young tableau T of shape λ is a filling of a shifted diagram λ with letters from the alphabet $A = \{1' < 1 < 2' < 2 < \cdots\}$ such that:

- Rows and columns are weakly increasing;
- Each column has at most one k for $k \in \{1, 2, \cdots\}$;
- Each row has at most one k for $k \in \{1', 2', \cdots\}$.

Example
For $\lambda = (5, 4, 2)$, a possible tableau:

```
1 2' 3' 3 3
2' 3 3 4' 4
4' 4
```
Examples

\[
Q_1(x_1, x_2) = x_1 + x_1' + x_2 + x_2' = 2x_1 + 2x_2
\]

\[
Q_2(x_1, x_2) = x_{11} + x_{1'1} + x_{22} + x_{2'2}' + x_{12} + x_{1'2} + x_{12'} + x_{1'2'} = 2x_1^2 + 2x_2^2 + 4x_1x_2
\]

\[
= \frac{1}{2} Q_1^2
\]
Properties

- Q_{λ} are symmetric;
- $\mathbb{Q}[Q_{\lambda}]$ form the same subalgebra as $\mathbb{Q}[p_{2k+1}]$, where $p_a = \sum x_i^a$;
- $\mathbb{Q}[Q_{\lambda}] = \mathbb{Q}[Q_{(2k+1)}]$.
Non-commutative Case

How do we generalize?

\[
\begin{array}{c|c|c|c|c|c}
1' & 1 & 2' & 3 & 3' & 4 & 5' \\
\end{array}
\xrightarrow{\text{ }}
\begin{array}{c}
x_5 x_4 x_3 x_3 x_2 x_1 x_1 \\
\end{array}
\text{(descending)}

\xleftarrow{\text{ }}
\begin{array}{c}
x_5 x_4 x_2 x_1 x_1 x_3 x_3 x_4 \\
\end{array}
\text{(hook)}
Non-commutative Case

How do we generalize?

\[
\begin{array}{c|c|c|c|c|c|c}
1' & 1 & 2' & 3 & 3' & 4 & 5' \\
\end{array}
\quad \leftrightarrow \quad x_5 x_4 x_4 x_3 x_3 x_2 x_1 x_1 (\text{descending})
\quad \leftrightarrow \quad x_5 x_4 x_2 x_1 x_1 x_3 x_3 x_4 (\text{hook})
\]

\[
Q^{(2)}(x_1, x_2) = x_1 x_1 + x_1' x_1 + x_2 x_2 + x_2' x_2
\]
\[
+ x_1 x_2 + x_1' x_2 + x_2 x_1 + x_2' x_1
\]
\[
= 2x_1^2 + 2x_2^2 + 4x_2 x_1 (\text{descending})
\]
\[
= 2x_1^2 + 2x_2^2 + 2x_2 x_1 + 2x_1 x_2 (\text{hook})
\]
\[
= \frac{1}{2} Q^{(1)}
\]

Hook reading is the more natural.
Proposed Rule of Three

Conjecture

Let $u_1, \ldots, u_N, v_1, \ldots, v_N$ be elements of a ring A. The following are equivalent:

- $Q(k)(u_S)$ and $Q(\ell)(v_S)$ commute for all S, k, ℓ.
- the above holds when $k = 1$ or $\ell = 1$ (for all S)

Computation suggests this is optimal.
Naive Approach

\[
\begin{align*}
aba + bba - baa - bab \\
aca + cca - caa - cac \\
bcb + ccb - cbb - cbc \\
acb + bca - cab - bac \\
acba + caba - cbca - cbac
\end{align*}
\]

Can we get the next simplest commutation relation?

\[
\begin{align*}
C' &= \left[e_2(a, b, c), e_3(a, b, c) \right] \\
 &= (cb + ca + ba)(cba) - (cba)(cb + ca + ba)
\end{align*}
\]
Yes!

\[C' = (bcb + ccb - cbb - cbc)(aa + ab - ba) \\
 + (cc + ac + bc - cb - ca)(aba + bba - ba a - bab) \\
 - (aca + cca - caa - cac)ba \\
 - (acb + bca - cab - bac)ba \\
 + (acba + caba - cbca - cbac)(a + b) \]
In the commutative case:

\[a_i = 1 + xu_i \]
\[b_i = (1 - xu_i)^{-1} \]
\[q_i = a_ib_i = (1 + xu_i)(1 - xu_i)^{-1} \]

And:

\[a[n] = \sum e_kx^k \]
\[b[n] = \sum h_kx^k \]
\[q[n] = \sum Q(k)x^k \]
In the non-commutative case:

\[a_i = 1 + xu_i \]
\[b_i = (1 - xu_i)^{-1} \]
\[q_i = a_i b_i = (1 + xu_i)(1 - xu_i)^{-1} \]

And:

\[a_{[n]}^\uparrow = \sum e_k x^k \]
\[b_{[n]}^\uparrow = \sum h_k x^k \]
\[q_{[n]}^\downarrow = \sum Q_{(k)} x^k \text{ descending reading} \]
In the *non-commutative* case:

\[a_i = 1 + xu_i \]
\[b_i = (1 - xu_i)^{-1} \]

And:

\[a_{\downarrow}[n] = \sum e_k x^k \]
\[b_{\uparrow}[n] = \sum h_k x^k \]
\[a_{\downarrow}[n] b_{\uparrow}[n] = \sum Q(k) x^k \text{ hook reading} \]
Theorem (Blasiak-Fomin 3.5)

Let R be a ring, and let $g_1, \ldots, g_N, h_1, \ldots, h_N \in R$ be potentially invertible elements. Then the following are equivalent:

- $\left[\sum_{i \in S} g_i, \sum_{i \in S} h_i \right] = 0,$
- $\left[\sum_{i \in S} g_i, h_S \right] = 0,$
- $\left[g_S, \sum_{i \in S} h_i \right] = 0,$
- $\left[g_S, h_S \right] = 0$ for all subsets S.
- the above holds for $|S| \leq 3$.

Use $g_i = 1 + x u_i, h_i = 1 + y v_i$ to get rule of three for e_k's.
Conjecture

Let A be a ring, and let $\{x_i\}_{i \in [N]}, \{y_i\}_{i \in [N]} \in A$. Then define

$$a_i = 1 + x_i t \quad \quad \quad \beta_i = 1 - y_i s$$

$$b_i = 1 - x_i t \quad \quad \quad \quad \alpha_i = 1 + y_i s$$

Further, let the following be true.

$$\left[\sum_{i \in S} x_i, \alpha_S (\beta_S)^{-1} \right] = 0$$

$$\left[\sum_{i \in S} y_i, a_S (b_S)^{-1} \right] = 0$$

Then $a_{[N]} (b_{[N]})^{-1} \alpha_{[N]} (\beta_{[N]})^{-1} = \alpha_{[N]} (\beta_{[N]})^{-1} a_{[N]} (b_{[N]})^{-1}$.
Proof Progress

We have been attempting to replicate Blasiak and Fomin’s proof of Lemma 8.2, both in the **standard case**, and in the **weakened case** where nonadjacent variables commute.

- □: proof for the conjecture;
- △: proof for the conjecture for $|S| = 2$.

Arrows represent dependencies.
Further Questions

- Can we prove the conjecture? What about in a weaker setting?
- When does commutativity extend to all Schur Q-functions?
Acknowledgements

This research was carried out as part of the 2017 REU program at the School of Mathematics at the University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1148634. Thanks to Elizabeth Kelley, Pavlo Pylyavskyy, and Vic Reiner for their invaluable mentorship and support.