We'll work over a field k, and think $k = \mathbb{C}$ so that polynomials have roots.

$$\mathbb{C}^* = \mathbb{C}^* = \mathbb{C} - \{0\}$$

a (1-dimensional) algebraic torus
Given \(\bar{x} = (x_0, x_1, \ldots, x_n) \in \mathbb{C}^{n+1} \), consider
\[
\begin{aligned}
\mathbb{C}^x \times \mathbb{C}^{n+1} & \rightarrow \mathbb{C}^{n+1} \\
(t, \bar{x}) & \rightarrow (tx_0, tx_1, \ldots, tx_n) \\
& = t \bar{x}
\end{aligned}
\]

For \(\bar{x} \in \mathbb{C}^{n+1} \setminus \{0\} \), write
\[
[\bar{x}] = \{t \bar{x} \mid t \in \mathbb{C}^x\}
\]

The \textit{corbit} of \(\bar{x} \) \(\leftrightarrow \) a line thru \(0 \) in \(\mathbb{C}^{n+1} \).

\textit{Projective space} \(P^n = \{[\bar{x}] \mid \bar{x} \in \mathbb{C}^{n+1} \setminus \{0\}\} \)

Note \(\mathbb{C}^{n+1} \setminus \{0\} \rightarrow P^n \)
\[
\begin{aligned}
\bar{x} & \rightarrow [\bar{x}] \\
\text{and} \quad [\bar{x}] = [\bar{y}] & \iff \exists t \in \mathbb{C}^x \text{ with } t\bar{x} = \bar{y}
\end{aligned}
\]
For \(\alpha \in \mathbb{N}^{n+1} \), let \(x^\alpha = x_0 x_1 \cdots x_n \) and \(|\alpha| = \sum_{i=0}^{n} \alpha_i \)

If \(f(x) = \sum_{\alpha} a_\alpha x^\alpha \in \mathbb{C}[x_0, x_1, \ldots, x_n] \) polyomials

\[f(t \cdot x^\alpha) = \sum_{\alpha} a_\alpha (t \cdot x^\alpha) = \sum_{\alpha} a_\alpha t^{|\alpha|} x^\alpha. \]

DEFN: Say \(f(x) \) is homogeneous (of degree \(d \)) if \(\exists d \) with \(|\alpha| = d \) for \(\alpha \) above with \(a_\alpha \neq 0 \).
Note: \(f(\bar{y}) = 0 \ \forall \bar{y} \in [\bar{x}] \)
follows from \(f(x) = 0 \)

\(\iff \) \(f(x) \) is homogeneous

Given \(X \subseteq \mathbb{P}^n \), set

\[
I(X) := \langle \{ f(x) \in \mathcal{S} \mid f(\bar{c}) = 0 \ \forall \bar{c} \in X \} \rangle
\]

\(C[\bar{x}_0, \ldots, \bar{x}_n] \)

(later: \(I(X) \) is always generated by homogeneous polynomials)
EXAMPLES:

1. $P^2 \subset X = \{ [1:0:0], [0:1:0], [0:0:1] \}$

 $[1:0:0] = C^y(1,0,0) = \{ (t,0,0) : t \in C \}$

Here,

 \[I(X) = \langle x_1x_2 \rangle \cap \langle x_0x_2 \rangle \cap \langle x_0x_1 \rangle \]

 \[= \langle x_0x_1, x_1x_2, x_0x_2 \rangle \]

2. $P^2 \supset Y = \{ [1:0:0], [1:1:0], [2:0:1] \}$

 \[I(Y) = \langle x_1x_2 \rangle \cap \langle x_0x_1x_2 \rangle \cap \langle x_0x_2, x_1 \rangle \]

 \[= \langle x_1x_2, x_0x_2 - 2x_2^2, x_0x_2 - x_2^3 \rangle \]
How'd we compute those ideal intersections?

Crash course in algebraic geometry

DEFN: $I \subseteq S = \mathbb{C}[x_0, x_1, \ldots, x_n]$ is an ideal if

1. $0 \in I$ (or $I \neq \emptyset$)
2. $a, b \in I \Rightarrow a + b \in I$
3. $a \in I, \; f \in S \Rightarrow af \in I$

Claim: $I(\mathbb{C})$ above is always an ideal
Given \(f_1, \ldots, f_r \in S \), the ideal generated by \(f_1, \ldots, f_r \) is

\[
(\mathfrak{a}) \langle f_1, \ldots, f_r \rangle = \left\{ \sum_{i=1}^r h_i f_i : h_i \in S \right\}
\]

e.g.

\[
\langle x_0 x_1, x_0 x_2, x_1 x_2 \rangle = \left\{ a(x) x_0 x_1 + b(x) x_0 x_2 + c(x) x_1 x_2 \right\}
\]

Hilbert's Basis Theorem

S is a Noetherian ring, meaning every ideal \(I \subset S \) is finitely generated, that is, of the form \(I = \langle f_1, \ldots, f_r \rangle \).
DEF'N: An ideal $I \subset S$ is **homogeneous** if it can be generated by homogeneous polynomials.

CLAIM: $X \subset \mathbb{P}^n \Rightarrow I(X)$ homogeneous

DEF'N: If $I = \langle f_1, \ldots, f_r \rangle$ is a homogeneous ideal in S, then

$V(I) = \{ p \in \mathbb{P}^n \mid f_1(p) = \ldots = f_r(p) = 0 \} = \{ p \in \mathbb{P}^n \mid f(p) = 0 \ \forall f \in I \}$

is a **projective algebraic variety**.
EXAMPLE:
\[V(\langle x_0 x_1, x_0 x_2, x_1 x_2 \rangle) = \{ [1:0:0], [0:1:0], [0:0:1] \} \subset \mathbb{P}^2 \]

THE GAME:
Geometric properties of \(V(I) \)

\[\leftrightarrow \]
Algebraic properties of the ring \(\mathbb{C}[x_0, \ldots, x_n]/I = S/I \).

e.g. irreducible varieties

\[\leftrightarrow \] domains \(S/I \) (i.e. \(I \) a prime ideal)
Recall: \(X \subset \mathbb{P}^n \)
\[\Rightarrow I(X) = \{ f \in S \mid f(p) = 0 \text{ for } p \in X \} \]

Theorem: For \(k \) infinite, the maps \(I \) are inclusion-reversing.

Furthermore, for any proj. variety \(V \),
\[V(I(V)) = V. \]

In other words,
\(X \subsetneq Y \Rightarrow I(X) \supsetneq I(Y) \)
\(I \subsetneq J \Rightarrow V(I) \supsetneq V(J) \).
Example: \(V(x_0) = V(x_0^2) \),

so \(I(V(I)) \supseteq I \)

(e.g. take \(I = \langle x_0^2 \rangle \))

How to fix this?

Defn: If \(I \) is an ideal of \(S \), then the **radical** of \(I \) is

\[
\sqrt{I} = \{ f \in S : \exists n \in \mathbb{Z}_{>0} \text{ with } f^n \in S \}
\]

Examples:

\[
\sqrt{\langle x_0^2 \rangle} = \langle x_0 \rangle
\]

\[
\sqrt{\langle x_0^2 y^3 \rangle} = \langle x_0 y \rangle
\]

Need binomial theorem.
THEOREM
(Projective strong Nullstellensatz)

If \(k \) is algebraically closed, \(I \) a homogeneous ideal in \(S = \mathbb{k}[x_0, \ldots, x_n] \) and \(V(I) = \emptyset \) is a nonempty projective variety in \(\mathbb{P}^n \), then
\[
I(V(I)) = \sqrt{I}.
\]
Projective Ideal-Variety Correspondence

If we restrict the earlier correspondence, we get

\[
\begin{align*}
\{ \text{nonempty projective varieties} \} & \quad \overset{I}{\leftrightarrow} \quad \{ \text{radical homogeneous ideals} \} \\
\lor & \quad \lor & \quad \lor
\end{align*}
\]

as inclusion-reversing mutually inverse bijections.

Note: Primary decomposition of ideals explains how to write varieties down as unions of irreducible varieties.
a) Prove that (*) is an ideal.

b) If $I \subset S$ is a (homogeneous) ideal, show that \sqrt{I} is (homogeneous) ideal.

c) Let $f, g \in \mathbb{C}[x, y]$ be distinct nonconstant polynomials. Let $I = \langle f^2, g^3 \rangle$. Is it true that $\sqrt{I} = \langle f, g \rangle$? Explain.

d) Let I, J be homog. ideals in S. Show $V(INJ) = V(I) \cup V(J)$.
Hilbert functions

$S_d = \{\text{homog. polynomials of degree d}\}$

a \mathbb{C}-vector space

$S = \mathbb{C}[x] = \bigoplus_{d=0}^{\infty} S_d$

$\dim_{\mathbb{C}} S_d = \#\{\text{monomials of degree d in } \mathbb{C}[x_0, \ldots, x_n]\}$

$= \binom{n+d}{n} = \frac{(n+d)!}{n! \cdot d!}$

Why? $m=2, d=5$

$x_0^3x_2^2 \prec \ldots \prec (0,0,0,2,2)$

$\{0+1, 0+2, 0+3, 2+4, 2+5\}$

$= \{1,2,3,6,7\} \subset \{1,2,\ldots, m+d\}$
Let's consider the function

\[\text{HF}_{s/I} : \mathbb{Z} \longrightarrow \mathbb{N} \]

\[d \longrightarrow \dim_c(S/I)_d \]

if \(I \) is homogeneous.

EXAMPLE: \(S = I(x) = \langle x_0 x_1, x_0 x_2, x_0 x_2 \rangle \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>monomials of degree (d) in (S)</th>
<th>(\dim_c(S/I)_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(x_0, x_1, x_2)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(x_0^2, x_1 x_2, x_2^2, x_0 x_0 x_1, x_0 x_1 x_2)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(d)</td>
<td>(x_0^d, x_1^d, x_2^d)</td>
<td>3</td>
</tr>
</tbody>
</table>
Example: \(\Sigma_{I}(C) = \langle x_0 x_2 - x_1^2 \rangle \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>monomials</th>
<th>(\dim \mathcal{E}(\Sigma_{I})_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(x_0, x_1, x_2)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(x_0^2, x_1^2, x_2^2, x_0 x_1, x_1 x_2, x_0 x_2)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(check (\rightarrow))</td>
<td>7</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(d)</td>
<td>(2d + 1)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

\(C \) is a curve (1-dimensional in \(\mathbb{P}^2 \)) and \(H_{\Sigma_I}(d) \) had degree 1 as a polynomial in \(d \).
Hilbert's polynomial theorem

Given homogeneous I ⊆ S,

exists a polynomial \(P(z) \in \mathbb{Q}[z] \)
such that, for \(d \) sufficiently large,

\[
HF_{S/I}(d) := \dim_\mathbb{Q}(S/I)_d = P(d).
\]

(The polynomial \(P(z) \) is called the Hilbert polynomial of \(I \).)

We'll deduce this from free resolutions of \(S/I \).
EXAMPLE: $I = I(x) = \langle x_1 x_2, x_1 x_2, x_1 x_2 \rangle$

$O \leftarrow S/I \leftarrow \begin{bmatrix} \chi_2 & \chi_2 \\ -\chi_1 & 0 \\ 0 & -\chi_1 \end{bmatrix}$

$S \leftarrow S^3(-2) \leftarrow S^2(-3) \leftarrow 0$

$\begin{align*}
&= \dim_c(S/I)_d = \dim_c S_d - 3 \dim_c S^2_d \\
&\quad + 2 \dim_c S^3_d \\
&= \dim_c S_d - 3 \dim_c S_{d-2} + 2 \dim_c S_{d-3}
\end{align*}$

$= 3 \text{ for } d \gg 0$

\[\begin{align*}
&= \dim_c S_d - 3 \dim_c S_{d-2} + 2 \dim_c S_{d-3} \\
&= 3 \text{ for } d \gg 0
\end{align*}\]
If $m+d-a \geq 0$, then
\[
\dim C_{d-a} = \binom{m+d-a}{m}
= \frac{(m+d-a)(m+d-a-1)\ldots(d-a+1)}{m!}
\]

\underline{Hilbert's Syzygy Theorem}\quad \text{on } \mathbb{C}P^m,

$I(X) \subset S = \mathbb{C}[x_0, \ldots, x_m]$ always has a free resolution
\[
0 \leftarrow S/I \leftarrow S \leftarrow F_1 \leftarrow F_2 \leftarrow \ldots \leftarrow F_m \leftarrow 0
\]

of length at most m.
REU Exercice 12

a) $I = \langle x_0 x_1 \rangle \cap \langle x_2 x_3 \rangle$
(2 skew lines in \mathbb{P}^3)

Prove $I = \langle x_0 x_2, x_1 x_3, x_0 x_3, x_1 x_2 \rangle$

Compute the Hilbert function polynomial
free resolution
(find one of length 3, show this is the minimal length)
b) Show $V(J) = V(I)$ for
\[J = \langle x_0 x_2 - x_1 x_3, x_0 x_3, x_1 x_2 \rangle, \]
but $JC \neq I(V(I))$.

Compute the Hilbert function polynomial free resolution.

Hint: Show
\[J = I \cap \langle x_3^2, x_0 x_3, x_2^2, x_1 x_2, x_0 x_2 - x_1 x_3, x_1 x_2 - x_1 x_3 \rangle \]

C) $R = k[x]/\langle x^3 \rangle$

Compute a free resolution of $R/\langle x^3 \rangle$ as an R-module, not S-module. In particular, show it is infinite.
Virtual resolutions

\[\mathbb{P}^{\overline{n}} := \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \times \ldots \times \mathbb{P}^{n_r} \]

\[((t_1, \ldots, t_r), (x_1, x_2, \ldots, x_r)) \mapsto (t_1 x_1, \ldots, t_r x_r) \]

Set \(\deg(x_i) = i^{th} \) standard basis vector in \(\mathbb{Z}^r \)

\[S = \mathbb{C}[x_1, \ldots, x_r] \text{ is a } \mathbb{Z}^r \text{-graded ring} \]
EXAMPLE: \(\mathbb{P}^1 \times \mathbb{P}^2 \):

\[
\begin{align*}
\left(\mathbb{C}^* \right)^2 \times \mathbb{C}^5 & \rightarrow \mathbb{C}^5 \\
(t_0, t_2, (x_0, x_1, y_0, y_1, y_2)) & \mapsto (tx_0, tx_1, \\
& \quad ty_0, ty_1, ty_2)
\end{align*}
\]

\[
\begin{align*}
\deg(x_0) &= \deg(x_1) = 1 \\
\deg(y_0) &= \deg(y_1) = \deg(y_2) = 1 \\
\deg(x_0^2 x_1 y_0^5) &= 3
\end{align*}
\]

Instead of throwing away \(\{0\} \times \mathbb{C}^{n+1} \) for \(\mathbb{P}^{n+1} \), here we throw away \(\{0\} \times \mathbb{C}^3 \cup (\mathbb{C}^* \times \{0\}) \).

\[B = \langle x_0, x_1 \rangle \cap \langle y_0, y_1, y_2 \rangle \]
Geometrically, $V(B) = \emptyset < \mathbb{P}^1 \times \mathbb{P}^2$.

DEFN: A virtual resolution of S/I is a sequence of $F_i = \bigoplus (S(-\alpha))\beta_i \alpha$ such that $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_t \leftarrow 0$ has $\text{ann} \left(\frac{\ker \partial_i}{\text{im} \partial_i+1} \right) \supseteq B^l$ for $l \gg 0$ and $\text{ann} \left(\frac{F_0}{\text{im} \partial_0} \right) = I$, up to components of B.

See examples in Macaulay 2 demo to eventually appear.
Virtual Hilbert Syzygy Theorem

$\exists Y \subset \mathbb{P}^n$, $I(Y)$ has a virtual resolution of length

$\leq |\bar{n}| = n_1 + n_2 + \ldots + n_r$.

Points in $\mathbb{P}^1 \times \mathbb{P}^1$

\[\begin{array}{cccc}
4 & \bullet & \bullet & \bullet \\
3 & \bullet & \bullet & \bullet \\
2 & \bullet & \bullet & \bullet \\
1 & \bullet & \bullet & \bullet \\
\end{array}\]

$\mathbb{P}^1 \rightarrow \mathbb{P}^1$
REU Exercise 13

a) What are all possible configurations of 3 points in $\text{P}^1 \times \text{P}^1$?

b) Write out their defining ideals.

c) Compute their corresponding Hilbert functions HF polynomials HP

free resolutions

d) Compute virtual resolutions in each case (get length 2).

e) Do same for 4 points

f) Write Macaulay2 code to compute $I(R)$
REU Problem 5

For configurations of points in $P^1 \times P^1$ (later $P^a \times P^b$),

a) What powers of components of B give a "short" virtual resolution.

b) What is the minimal number of generators needed to generate an ideal of points virtually?

c) When does the ideal of points have a virtual resolution that is a Koszul complex?

d) More to do!
... switched to Macaulay2
demo of virtual resolutions.

Starting with free resolution, can intersect with powers of components of B, and sometimes this gives virtual resolutions of $I(Y)$, smaller than the original.