Let $G = (V, E)$ be a directed edge-weighted graph with no loops or multiple edges.

Consider a variable x_v for each vertex $v \in V$.

R-systems
Given \((x_v)_{v \in V}\), we want to find a new set of variables \((x'_v)_{v \in V}\) that satisfy

\[
(x_v x'_v)^{(\ast)} = \left(\sum_{(u,v) \in E} \frac{w_t(u,v)}{x'_v} \right)^{-1} \left(\sum_{(v,w) \in E} w_t(v,w) x'_w \right)
\]

More symmetrically,

\[
\sum_{(u,v) \in E} w_t(u,v) \frac{x'_v}{x'_u} = \sum_{(v,w) \in E} w_t(v,w) \frac{x'_w}{x'_v}
\]
Example

(edges with no weight are \(\uparrow \))

Check bottom left vertex:

\[
\text{LHS}(\ast) = abc
\]

\[
\text{RHS}(\ast) = b \left(\frac{1}{ac} \right)^{-1} = abc
\]

Check top left vertex:

\[
\text{RHS}(\ast) = bc(c+d)
\]

\[
\text{LHS}(\ast) = (c+d)\left(\frac{1}{bc} \right)^{-1}
\]
Why do this?

This generalizes a process called "birational rowmotion" defined by Einstein & Propp,

david, not albert

- an operation on (variables assigned to elements of) posets
- combines ideas of birational toggling (a well-studied operation) and rowmotion (toggling elements in and out of poset ideals)

Consider a poset (= partially ordered set) as a directed graph with all edges oriented upward.
Add an additional vertex \(s \).

Add edges
- from \(s \) to any source
- from any sink to \(s \)

\[\text{e.g.} \]

Applying the transformation
\((x_i) \rightarrow (x'_i) \) where we fix \(x_s = x'_s = 1 \)

is the same as doing birational rowmotion on the poset.
DEF'N: A graph $G = (V, E)$ is strongly connected if $\forall u, v \in V \exists$ a directed path $u \to v$ in G.

DEF'N: For a strongly connected G, an arborescence rooted at v is a spanning tree directed toward v.

EXAMPLE: has one rooted at 1:

```
3 \rightarrow 1
```

but two rooted at 3:

```
3 \rightarrow 1
```

```
3 \rightarrow 1
```
DEFN: The weight of an arborescence T is

$$w(T, X) := \prod_{(u,v) \in T} \frac{x_v}{x_u}$$

$$T = \begin{array}{c}
\sqrt{2} \\
\frac{3}{\rightarrow 1}
\end{array}$$

$$w(T, X) = \left(\frac{x_1}{x_2}\right) \left(\frac{x_2}{x_3}\right)$$
Theorem (Galashin-Pylyavskyy, 2017)

Let $G = (V, E)$ be strongly connected. Given $(x_r)_{r \in V}$, there exists a unique solution for $(x'_r)_{r \in V}$ up to rescaling:

$$x'_v = \frac{x_v}{\sum_{\text{arborescences } T \text{ rooted at } v} \text{wt}(T, x)}$$

Example: G hom before has

$$x'_1 = \frac{x_1}{\left(\frac{x_1}{x_2}\right)} = x_2$$

$$x'_2 = \frac{x_2}{\left(\frac{x_2}{x_3}\right)} = x_3$$

$$x'_3 = \frac{x_3}{\frac{x_3}{x_1} + \frac{x_3^2}{x_2 + x_3}} = \frac{x_1 x_2}{x_2 + x_3}$$
Exercise 6

Consider the graph

\begin{center}
\begin{tikzpicture}
\node[vertex] (a) at (-2.5,0) {a};
\node[vertex] (b) at (2.5,0) {b};
\node[vertex] (c) at (0,2.5) {c};
\node[vertex] (d) at (2.5,5) {d};
\node[vertex] (e) at (0,5) {e};
\path[->,thick]
(a) edge (e);
(e) edge (b);
(e) edge (c);
(c) edge (d);
(d) edge (b);
\end{tikzpicture}
\end{center}

use the arborescence formula to find \((x_v')\) corresponding to \((x_v) = (a,b,c,d,e)\) above.
DEFINITION: For a strongly connected G, define ϕ to be the map $(x_v) \rightarrow (x'_v)$. Then the **R-system** associated with G is the discrete dynamical system obtained by iterating ϕ.

DEFINITION: A **rectangle poset** is the product of two chain posets.
THM (Grinberg-Roby) 2016

Birational rowmotion is periodic on rectangular posets, with period ptg.

This can be proven using a "T sequence"
T-sequence idea: write our X_i variables as Laurent monomials (= monomials with positive and negative exponents allowed) in some other variables $\{T_i\}_{i \in \mathbb{Z}}$, where the T_i's form a recursive sequence and each T_i is a Laurent polynomial in the original values.
EXAMPLE:

\[
\begin{array}{c}
\left(x_1, x_2, x_3 \right) \\
U_1 \quad U_2 \quad U_3
\end{array}
\rightarrow
\begin{array}{c}
\left(x_2, x_3, \frac{x_1 x_2}{x_2 + x_3} \right) \\
U_2 \quad U_3 \quad U_4
\end{array}
\rightarrow
\begin{array}{c}
U_3 \quad U_4 \quad U_5
\end{array}
\rightarrow \ldots
\]

Let \(T_0 = x_1 x_2 x_3 \)

\(T_1 = x_2 x_3 \)

\(T_2 = x_3 \)

\(T_3 = 1 \)

and \(T_n T_{n+4} = T_{n+1} T_{n+3} + T_{n+2}^2 \)

the \textbf{Somos-4 sequence}, known to have Laurens phenomenon (can write all \(T_i \)'s as Laurent polynomials in \(T_0, T_1, T_2, T_3 \))
CLAIM: \[u_n = \frac{T_n}{T_{n+1}} \]

\[U_{n+3} = \frac{T_{n+3}}{T_{n+4}} = \frac{T_n}{T_{n+1}T_{n+3} + T_{n+2}} \]

versus

\[U_{n+3} = \frac{u_n u_{n+1}}{u_{n+1} + u_{n+2}} = \frac{\left(\frac{T_n}{T_{n+1}}\right)\left(\frac{T_{n+1}}{T_{n+2}}\right)}{\left(\frac{T_{n+1}}{T_{n+2}}\right) + \left(\frac{T_{n+2}}{T_{n+3}}\right)} \]

\[= \ldots = \text{expression above} \]

\(\checkmark \)

from the map \(\phi \)

induction
Back to rectangles

There is a \(\tau \)-sequence

\[
\alpha_{ij}(t) \alpha_{ij}(t+1) = \begin{cases}
\text{see Sunita's scanned notes!}
\end{cases}
\]

and \(x_{ij}(t) = \frac{\alpha_{i+1,j+1}(t)}{\alpha_{ij}(t+1)} \)
REU Exercise 7:
(a) List the relations that must be true for this system to be consistent.
(b) Check the relations for
 \[2 \leq i \leq p\]
 \[2 \leq j \leq q\]
We can prove periodicity using this \(T \)-sequence (part of this will be done in this afternoon's TA session).

DEF'N: A **trapezoid poset** is a rectangle poset with the sides cut off by diagonals.
REU Problem 3a

Prove birational rowmotion is periodic on all trapezoid posets (ask Sylvester what the conjectural period is).
DEFN: A \(k \)-fold cover of a graph \(G=(V_G,E_G) \) is a graph \(H=(V_H,E_H) \) with a map \(\pi: H \rightarrow G \) such that

1. \(\pi \) maps vertices to vertices, edges to edges.
2. \(|\pi^{-1}(v)| = |\pi^{-1}(e)| = k \quad \forall v \in V_G, e \in E_G \)
3. For \(e=(u,v) \in E_H \),
 \[\pi(e) = (\pi(u), \pi(v)) \in E_G \]
4. For \(e \in E_H \), \(wt(e) = wt(\pi(e)) \).
EXAMPLE:

\[1' \xrightarrow{a} 2' \]
\[1'' \xrightarrow{a} 2'' \]
\[1'' \xrightarrow{a} 2'' \]

\[H \quad \pi \quad G\]
Thm: If H is a k-fold cover of G and v' covers v, then

\[
\sum_{\text{arborescences } T \text{ rooted at } v \text{ in } G} \sum' \text{wt}(T) \quad \text{does not depend upon the choice of } v', \text{ nor on } v.
\]

In above example, picking $v=1, v'=1'$

get \(\frac{c+d}{c+da+bc+db+ad} = \frac{1}{bc+ad} \)

but picking $v=2, v'=2'$

get \(\frac{a+b}{ada+cba+dab+bcb} = \frac{1}{bc+ad} \)
REU Problem 3b

Write this ratio as a determinant, and investigate the positivity of the coefficients.

Why might one think it is related to a determinant?

DEFN: The Laplacian matrix of a graph $G = (V, E)$ is $L = (L_{ij})_{1 \leq i, j \leq n}$, where

$$L_{ij} = \begin{cases} \sum_{e \text{ with source } v_i} \text{wt}(e) & \text{if } i = j \\ - \sum_{e = (v_i, v_j)} \text{wt}(e) & \text{if } i \neq j \end{cases}$$
EXAMPLE: \(G \) from before

\[
L = \begin{bmatrix}
 a+b & -a-b \\
 -c-d & c+d
\end{bmatrix}
\]

Consider the 2-fold cover case, and label one lift of each vertex as \(\Theta \), the other as \(\Theta' \). Call an edge of \(G \) positive if its lifts are \(\Theta \rightarrow \Theta' \), negative if its lifts are \(\Theta \rightarrow \Theta \).
In the Laplacian of G, switch the sign of the weights of the positive edges off the diagonal.

EXAMPLE

$$
\begin{bmatrix}
a+b & a-b \\
c-d & c+d
\end{bmatrix}
$$

"CONJECTURE"

Our ratio is $\left[\frac{1}{2} \text{det of this} \right]^{-1}$
EXAMPLE

\[
\begin{vmatrix}
 a+b & a-b \\
 c-d & c+d
\end{vmatrix} = (a+b)(c+d) - (a-b)(c-d)
\]

\[
= ac + ad + bc + bd - ac + ad + bc - bd
\]

\[
= 2(ad + bc)
\]

REM Exercise 8
Check the conjecture for

\[G = \]

\[H = \]

(maybe it fails?)