Ribbon Lattices and Ribbon Functions

Michael Curran, Calvin Yost-Wolff, Sylvester Zhang, Valerie Zhang

UMN Twin Cities REU Summer 2019

July 24, 2019
Boundary Conditions: For $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$ create a grid with r rows and $\lambda_1 + r$ columns. For example, if $\lambda = (4, 2, 2, 1)$ then $r = 4$ and $\lambda_1 + r = 8$.
Take the path sequence of λ and the empty partition:
Place the path sequence of \(I \) at the bottom of the grid and the path sequence of \(\emptyset \) at the top of the grid.
Finally place only right arrows along the horizontal boundary:
Theorem

Denote the partition function with these boundary conditions \(Z_\lambda \). Then \(Z_\lambda \) is equal to the Schur function \(s_\lambda \) for any partition \(\lambda \).

Idea of Proof: Construct a weight preserving bijection between semistandard Young tableaux of shape \(\lambda \) and fillings of the lattice with the boundary conditions just described.
Example:
Write the tableaux as a sequence of partitions:
Take the path sequence of each partition:
Start with 4 by 8 lattice as before:
Add path sequence of empty partition to the top:
Add path sequence of second partition to the next row:
Continue:
Then there is only one possible admissible state with this choice of up arrows.
Ribbon Tableaux

- **n-ribbon**: Some skew-shape containing \(n \) "unit boxes" without a \(2 \times 2 \) square.

 - e.g. 3-ribbon:
 - 4-ribbon:

- **Semi-standard n-ribbon Tableaux**
 - Tile a Young diagram with \(n \)-ribbons
 - then fill each ribbon with numbers like a SSYT

 - The part with same number forms a horizontal strip (define later)
E.g. \[
\begin{array}{c}
1 & 2 \\
4 & 2 \\
3 & 4
\end{array}
\in RT_3^4(\lambda) \quad \lambda = 5, 4, 4, 1, 1
\]

E.g. \[
\begin{array}{c}
1 & 2 \\
2 & 2 \\
2 & 2
\end{array}
\]

is not a Young diagram.

Indeed, NO RT for this diagram.

\[
\begin{array}{c}
1 & 2 \\
2 & 2 \\
2 & 2
\end{array}
\]

is not a horizontal strip.
A horizontal strip is a collection of ribbons which forms a skewed shape, such that:

- The upper right box of each ribbon has to touch the air, i.e., nothing above it.

E.g.:

![Diagram](image-url)
\textbf{Spin} 🌟

- The spin of a ribbon is height -1.

 e.g. $\text{spin}\left(\begin{array}{c} \hline \end{array} \right) = 2$

- The spin of a ribbon tableau is sum of spin.

 e.g. $\text{spin}\left(\begin{array}{c} 1 \hline 1 \\hline 2 \end{array} \right) = 1 + 1 + 2 = 4$
Ribbon Function (Lascoux, Leclerc & Thibon)

- Let λ / μ be a skew partition tilable by n-ribbons.

$$G_{\lambda / \mu}^{n}(x, q) = \sum_{T} q^{\text{spin}(T)} w^{T}(T)$$

\[\begin{array}{cccc}
1 & 1 & 1 & \\
2 & 2 & & \\
3 & & & \\
\end{array} \]

\[\Rightarrow q^{3} x_{1}^{2} x_{2}^{2} x_{3} \]

(Thus) Ribbon Fns are Symmetric
Ribbon Lattice Models for \(n \)-ribbon fin.

\[
\begin{array}{c}
\text{\{n, with (n+1) in-arrow (out-arrow)} \\
\end{array}
\]

Think of the vertex as:

\[
\text{...}
\]

... then
The weight of Ribbon vertex

1. Don't allow changing arrow on straight edge:
 eg. $\delta = 1$ if , $\delta = 0$ if

2. $\delta(v) = 1$ if a left arrow entering through bended edge

\[
\delta(v) = \sum_{i} x_i \text{ if in the } i\text{th row}
\]
3. The spin \(\star \)

i) \[\text{Diagram} \]

ii) \[\text{Diagram} \]

iii) \[\text{Diagram} \]

iv) \[\text{Diagram} \]

\[\sigma(v) = \# \text{ of} \ < \ \text{in} \]
From Ribbon Tableaux to Lattice model.

- Think of Ribbon Tableaux as sequence of partitions.

\[\begin{array}{c}
1 \downarrow 2 \downarrow 3 \\
\Rightarrow \emptyset \subset \begin{array}{c}
\lambda_0 \\
\lambda_1 \\
\lambda_2 \\
\lambda_3
\end{array}
\end{array} \]

- Same boundary condition
$q^4 x_1$
$q^2 x_2^2$
$q^3 x_3^2$
peeling off one n-ribbon (if time)

i) numbering the two edge sequence (blue red dots) from 0 to n

ii) The n-th • is moved to the 0-th •, everything else stays.

iii) in the lattice

iv) # intersection = spin
peeling off one horizontal ribbon strip. (if time)

- b/c the top-right box of each ribbon has nothing above it.

we can glue small ribbons up to make the entire ship.

e.g.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{exampleDiagram}
\end{figure}
Yang–Baxter Equation (a.k.a. star–triangle equality)

want a new set of vertex \(\times \) \(\circ \) ... with certain weight.

Such that

\[
\begin{array}{c}
\text{\begin{tikzpicture}
\draw (0,0) -- (1,1) -- (1,0) -- (0,-1) -- cycle;
\draw[red] (0,0) -- (1,1);
\draw[red] (0,-1) -- (1,0);
\draw[blue] (0,0) -- (0,-1);
\draw[blue] (1,1) -- (1,0);
\end{tikzpicture}} = \begin{tikzpicture}
\draw (0,0) -- (1,1) -- (1,0) -- (0,-1) -- cycle;
\draw[red] (0,0) -- (1,1);
\draw[red] (0,-1) -- (1,0);
\draw[blue] (0,0) -- (0,-1);
\draw[blue] (1,1) -- (1,0);
\end{tikzpicture}
\end{array}
\]

\[\sum (\text{wt(LHS)}) = \sum (\text{wt(RHS)})\] for all boundary

star–triangle \(\times \) \(\circ \) for larger ribbon looks like:

\[
\begin{array}{c}
\text{\begin{tikzpicture}
\draw (0,0) -- (1,1) -- (1,0) -- (0,-1) -- cycle;
\draw[red] (0,0) -- (1,1);
\draw[red] (0,-1) -- (1,0);
\draw[blue] (0,0) -- (0,-1);
\draw[blue] (1,1) -- (1,0);
\end{tikzpicture}} = \begin{tikzpicture}
\draw (0,0) -- (1,1) -- (1,0) -- (0,-1) -- cycle;
\draw[red] (0,0) -- (1,1);
\draw[red] (0,-1) -- (1,0);
\draw[blue] (0,0) -- (0,-1);
\draw[blue] (1,1) -- (1,0);
\end{tikzpicture}
\end{array}
\]
• We conjecture that our lattice model is solvable, i.e., there exist YBEs.

• The YBE for 1, 2, 3-ribbon lattice is computed via SAGE.
Application of the Lattice model.

We can derive various identities of Ribbon F_n using our lattice.

E.g. dual Cauchy identity

Prime rule

$q=1$ ribbon fn is product of Schur fn's.
Thank You!