Lattice Models, Differential Forms, and the Yang-Baxter Equation

Kedar Karhadkar

University of Minnesota REU 2020

August 6, 2020
What is a Lattice Model?
What is a Lattice Model?

- Origins in statistical mechanics, studied by Baxter [1].
What is a Lattice Model?

- Origins in statistical mechanics, studied by Baxter [1].
- Grid with labeled edges.
What is a Lattice Model?

- Origins in statistical mechanics, studied by Baxter [1].
- Grid with labeled edges.
- Labelings around a vertex locally satisfy some property.
Six-Vertex Model
Six-Vertex Model

Observation: A state $g_{i,j}$, $f_{i,j}$, $g_{i,j+1}$, $f_{i,j+1}$ is admissible iff $f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{3}$.
\[f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{3} \]
\[\iff D_y f = D_x g \]
\[\iff fdx + gdy \text{ is closed.} \]

- \(f \) and \(g \) are functions on a rectangular grid, take values in \(\mathbb{F}_3 \).
$f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{3}$

$\iff D_y f = D_x g$

$\iff f dx + g dy$ is closed.

- f and g are functions on a rectangular grid, take values in \mathbb{F}_3.
- Admissible 1-form $f dx + g dy$: f and g only equal 0 and 1.
Differential Forms

\[f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{3} \]
\[\iff D_y f = D_x g \]
\[\iff f \, dx + g \, dy \text{ is closed.} \]

- \(f \) and \(g \) are functions on a rectangular grid, take values in \(\mathbb{F}_3 \).
- Admissible 1-form \(f \, dx + g \, dy \): \(f \) and \(g \) only equal 0 and 1.
- So admissible states \(\iff \) closed admissible 1-forms.
Exterior derivative: for $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{F}_3$,

$$dh := (D_x h)dx + (D_y h)dy.$$
Differential Forms

- Exterior derivative: for $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{F}_3$,

$$dh := (D_x h)dx + (D_y h)dy.$$

- A 1-form α is exact if $\alpha = dh$ for some function $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{F}_3$.

Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.

Lemma: Every closed 1-form on $\{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}$ is exact.
Differential Forms

- Exterior derivative: for $h : \mathbb{Z} \times \mathbb{Z} \to F_3$,

 $$dh := (D_x h)dx + (D_y h)dy.$$

- A 1-form α is exact if $\alpha = dh$ for some function $h : \mathbb{Z} \times \mathbb{Z} \to F_3$.

- Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.
Differential Forms

- Exterior derivative: for $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_3$,

$$dh := (D_x h)dx + (D_y h)dy.$$

- A 1-form α is exact if $\alpha = dh$ for some function $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_3$.

- Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.

Lemma

Every closed 1-form on $\{1, 2, \cdots, m\} \times \{1, 2, \cdots, n\}$ is exact.
3-Colorings

- We have a correspondence

\[
\{\text{Closed 1-forms}\} \leftrightarrow \{\text{Functions}\} \times \{\text{Initial condition}\}
\]

given by

\[h \leftrightarrow (dh, h_0).\]
We have a correspondence

\{\text{Closed 1-forms}\} \leftrightarrow \{\text{Functions}\} \times \{\text{Initial condition}\}

given by

\[h \leftrightarrow (dh, h_0). \]

Using this correspondence, we can prove

Theorem

We have a one-to-one correspondence

\[\{\text{Admissible states}\} \leftrightarrow \{\text{3-colorings of a rectangular grid}\} \times \mathbb{F}_3. \]
Toroidal Boundary Conditions
Toroidal Boundary Conditions

- Same treatment as before - discrete differential forms.

Lemma

Every closed 1-form on the discrete torus can be written uniquely in the form $rdx + sdy + \omega$, where $r, s \in F^3$ and ω is exact.
Toroidal Boundary Conditions

- Same treatment as before - discrete differential forms.
- Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional with intuition from $S^1 \times S^1$.

Lemma

Every closed 1-form on the discrete torus can be written uniquely in the form $rdx + sdy + \omega$, where $r, s \in \mathbb{F}$ and ω is exact.
Same treatment as before - discrete differential forms.

Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional with intuition from $S^1 \times S^1$.

Lemma

Every closed 1-form on the discrete torus can be written uniquely in the form

$$r dx + s dy + \omega,$$

where $r, s \in \mathbb{F}_3$ and ω is exact.
3-colorings of a rectangular grid \leftrightarrow functions h such that $D_x h, D_y h \neq 0$, and $h_{1,1} = 0$.

Call h sparse if neither $D_x h$ nor $D_y h$ are surjective, and $h_{1,1} = 0$.

No nice correspondence with 3-colorings in toroidal case, but we have

Theorem

There is a one-to-one correspondence between sparse functions and admissible states of the six-vertex model with toroidal boundary conditions.
3-colorings of a rectangular grid \leftrightarrow functions h such that $D_x h, D_y h \neq 0$, and $h_{1,1} = 0$.

Call h sparse if neither $D_x h$ nor $D_y h$ are surjective, and $h_{1,1} = 0$.
3-colorings of a rectangular grid ↔ functions h such that $D_x h, D_y h \neq 0$, and $h_{1,1} = 0$.

Call h sparse if neither $D_x h$ nor $D_y h$ are surjective, and $h_{1,1} = 0$.

No nice correspondence with 3-colorings in toroidal case, but we have

Theorem

There is a one-to-one correspondence between sparse functions and admissible states of the six-vertex model with toroidal boundary conditions.
Eight-Vertex Model

- Observation: A state $g_{i,j}, g_{i,j+1}, f_{i,j+1}, f_{i,j}$ is admissible iff

$$f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{2}.$$
Eight-Vertex Model

We *could* use differential calculus again, but there is an easier approach.
Eight-Vertex Model

- We *could* use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_2.
Eight-Vertex Model

- We *could* use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_2.
- Everything is a linear condition.
We could use differential calculus again, but there is an easier approach.

Set of admissible states is a vector space over \mathbb{F}_2.

Everything is a linear condition.

Easy to count the number of admissible states.

Theorem

The number of admissible states of the eight-vertex model is 2^{m+n+mn}.
Question: Given a set of boundary conditions, how many admissible states do they have?
Question: Given a set of boundary conditions, how many admissible states do they have?

By linear algebra, this essentially does not depend on what the boundary conditions are.
Question: Given a set of boundary conditions, how many admissible states do they have?

By linear algebra, this essentially does not depend on what the boundary conditions are.

Admissible states of “homogeneous lattice” \leftrightarrow Admissible states of lattice with given boundary conditions.

$$L_0 \leftrightarrow L_B + L_0$$
New question: when does a set of boundary conditions have an admissible state?
New question: when does a set of boundary conditions have an admissible state?

Answer: when the boundary values sum to 0.

Theorem

Let B be a set of boundary values that sum to 0. Then the number of admissible states with boundary conditions B is $2^{(m-1)(n-1)}$.
Adding Weights

$$\begin{array}{cccc}
\begin{array}{cc}
0 & 1 \\
0 & 1 \\
0 & 1 \\
\end{array}
\end{array}
\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array}
\begin{array}{cc}
1 & 0 \\
0 & 0 \\
1 & 0 \\
\end{array}
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & 1 \\
\end{array}
\begin{array}{cc}
a_1 & a_{-1} \\
b_1 & b_{-1} \\
c_1 & c_{-1} \\
d_1 & d_{-1} \\
\end{array}$$
Adding Weights

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
a_1 & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
a_{-1} & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
b_1 & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
b_{-1} & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
c_1 & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
c_{-1} & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
d_1 & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
d_{-1} & & \cdot & \cdot \\
& & & \\
\cdot & & & \cdot \\
& & & \\
\end{array}
\]
Yang-Baxter Equation

\[\sum_{\gamma, \mu, \nu} \alpha \beta \gamma \delta \theta \rho \sigma \tau = \sum_{\delta, \phi, \psi} \alpha \beta \gamma \delta \theta \rho \sigma \tau \]
Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?
Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?

Galleas and Martins [2] answered this question in the case $c_1 = c_{-1}$ and $d_1 = d_{-1}$.
Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?

Galleas and Martins [2] answered this question in the case $c_1 = c_{-1}$ and $d_1 = d_{-1}$.

YBE can be expressed as a matrix equation

$$R_{12}S_{13}T_{23} - T_{23}S_{13}R_{12} = 0.$$
Explicit Computations

\[
\begin{align*}
a_j(T)a_j(S)d_i(R) + d_i(T)c_i(S)a_{-j}(R) &= c_i(T)d_i(S)a_j(R) + b_{-j}(T)b_{-j}(S)d_i(R) \\
d_i(T)b_j(S)c_i(R) + a_j(T)d_i(S)b_{-j}(R) &= b_j(T)d_i(S)a_j(R) + c_{-i}(T)b_{-j}(S)d_i(R) \\
d_i(T)b_j(S)b_j(R) + a_j(T)d_i(S)c_{-i}(R) &= d_i(T)a_j(S)a_j(R) + a_{-j}(T)c_{-i}(S)d_i(R) \\
c_i(T)a_j(S)c_i(R) + b_j(T)c_i(S)b_{-j}(R) &= a_j(T)c_i(S)a_j(R) + d_{-i}(T)a_{-j}(S)d_i(R) \\
c_i(T)a_j(S)b_j(R) + b_j(T)c_i(S)c_{-i}(R) &= c_i(T)b_j(S)a_j(R) + b_{-j}(T)d_{-i}(S)d_i(R) \\
b_{-j}(T)a_j(S)c_i(R) + c_{-i}(T)c_i(S)b_{-j}(R) &= d_{-i}(T)d_i(S)b_j(R) + a_j(T)b_{-j}(S)c_i(R) \\
c_1(T)c_{-1}(S)c_1(R) &= c_{-1}(T)c_1(S)c_{-1}(R) \\
d_1(T)c_1(S)d_{-1}(R) &= d_{-1}(T)c_{-1}(S)d_1(R) \\
c_1(T)d_1(S)d_{-1}(R) &= c_{-1}(T)d_{-1}(S)d_1(R) \\
d_1(T)d_{-1}(S)c_1(R) &= d_{-1}(T)d_1(S)c_{-1}(R)
\end{align*}
\]
Necessary Conditions

Theorem

Necessary conditions for a solution with \(c_{-1}(R), c_1(R), d_{-1}(R), d_1(R) \) **nonzero include**

\[
\begin{align*}
a_1(T)b_1(T)F(S) &= a_{-1}(T)b_{-1}(T)F(S) \\
a_1(S)b_1(S)F(T) &= a_{-1}(S)b_{-1}(S)F(T) \\
\frac{c_i(T)d_{-i}(T)}{c_{-i}(T)d_i(T)}G_i(S, T)^2 &= [a_1(T)b_1(T)F(S) - a_1(S)b_1(S)F(T)]^2 \\
\frac{c_1(T)c_{-1}(S)}{c_{-1}(T)c_1(S)} &= \frac{d_1(T)d_{-1}(S)}{d_{-1}(T)d_1(S)}.\end{align*}
\]
This research was conducted at the 2020 University of Minnesota Twin Cities REU with the support of the NSF grant DMS-1745638.
References

Exactly Solved Models in Statistical Mechanics.

Yang-Baxter equation for the asymmetric eight-vertex model.
Physical review E, 11.