Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

University of Minnesota

July 2020
Outline

1. Whittaker Functions
2. The Alcove Walk Model
3. An Introduction to Folding
4. References
Whittaker Functions

The Alcove Walk Model

An Introduction to Folding

References
Where Whittaker Functions Appear

- Special functions over a split reductive group $G(F)$.

Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions

The Alcove Walk Model

An Introduction to Folding

References
Where Whittaker Functions Appear

- Special functions over a split reductive group $G(F)$.
- Historically, they referred to a solution to a confluent hypergeometric equation proposed by Whittaker.
Where Whittaker Functions Appear

• Special functions over a split reductive group $G(F)$.
• Historically, they referred to a solution to a confluent hypergeometric equation proposed by Whittaker.
• Basic tool in aut. forms and the construction of L-functions.
Where Whittaker Functions Appear

- Special functions over a split reductive group $G(F)$.
- Historically, they referred to a solution to a confluent hypergeometric equation proposed by Whittaker.
- Basic tool in automorphic forms and the construction of L-functions.
- Arise as common eigenfunctions in physics.
The Whittaker Model

Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions

The Alcove Walk Model

An Introduction to Folding

References
The Whittaker Model

\[G(F) \text{ is split reductive:} \]
The Whittaker Model

\[G(F) \] is split reductive: torus \(T \),
The Whittaker Model

\(G(F) \) is split reductive: torus \(T \), unipotent \(U \),
The Whittaker Model

\[G(F) \text{ is split reductive: torus } T, \text{ unipotent } U, \text{ Borel } B = TU, \]
$G(F)$ is split reductive: torus T, unipotent U, Borel $B = TU$, maximal compact K.
The Whittaker Model

$G(F)$ is split reductive: torus T, unipotent U, Borel $B = TU$, maximal compact K. The Whittaker model is the space of functions W satisfying

$$W(ug) = \psi(u)W(g) \text{ (Whittaker relation).}$$
The Whittaker Model

$G(F)$ is split reductive: torus T, unipotent U, Borel $B = TU$, maximal compact K. The Whittaker model is the space of functions W satisfying

$$W(ug) = \psi(u)W(g)$$ \hspace{1cm} \text{(Whittaker relation)}.

$G(F)$ acts by right translation.
The Whittaker Model

$G(F)$ is split reductive: torus T, unipotent U, Borel $B = TU$, maximal compact K. The Whittaker model is the space of functions W satisfying

$$W(ug) = \psi(u)W(g) \quad \text{(Whittaker relation)}.$$

$G(F)$ acts by right translation.

Theorem 1.1 (Gelfand-Grave, Jaquet-Langlands, etc. al)

Given an irr. rep. (π, V) of $G(F)$ there is at most one isomorphic copy inside the Whittaker model under this action by right-translation.
The Whittaker Model

$G(F)$ is split reductive: torus T, unipotent U, Borel $B = TU$, maximal compact K. The Whittaker model is the space of functions W satisfying

$$W(ug) = \psi(u)W(g) \quad \text{(Whittaker relation)}.$$

$G(F)$ acts by right translation.

Theorem 1.1 (Gelfand-Grave, Jaquet-Langlands, etc. al)

Given an irr. rep. (π, V) of $G(F)$ there is at most one isomorphic copy inside the Whittaker model under this action by right-translation.

Upshot: We view (π, V) as functions on $G(F)$.

The Spherical Function

Inside \((\pi, V)\) there is a spherical vector \(\phi_K\) fixed by the action of \(K\).
The Spherical Function

Inside (π, V) there is a spherical vector ϕ_K fixed by the action of K. Inside the Whittaker model ϕ_K is

$$W(t^\lambda) = \int_{U^-} v_K(ut^\lambda)\psi(u)\,du.$$
The Spherical Function

Inside \((\pi, V)\) there is a spherical vector \(\phi_K\) fixed by the action of \(K\). Inside the Whittaker model \(\phi_K\) is

\[
W(t^\lambda) = \int_{U^-} v_K(ut^\lambda)\psi(u)\,du.
\]

This is the (spherical) Whittaker function.
Outline

1 Whittaker Functions
2 The Alcove Walk Model
3 An Introduction to Folding
4 References
The Alcove Walk Model for \mathfrak{s}_3
The Alcove Walk Model for \mathfrak{sl}_3

\[H_{\alpha_2 + \delta} \quad H_{\alpha_2} \quad H_{-\alpha_2 + \delta} \]

\[\cdots \quad - \quad + \quad - \quad + \quad \cdots \]

\[H_{\alpha_1 + \delta} \quad H_{\alpha_1} \quad H_{-\alpha_1 + \delta} \]

\[s_2 \quad s_1 \quad s_2 s_1 \quad s_1 s_2 \]

\[H_{\alpha_0} \quad H_{\varphi} \quad H_{\varphi + \delta} \]

\[w_0 \]
The Setting
The Setting

We work in a Euclidean space h^*_R.
The Setting

We work in a Euclidean space \mathfrak{h}_R^*. Inner product (\cdot, \cdot).
The Setting

We work in a Euclidean space $\mathfrak{h}^*_\mathbb{R}$. Inner product (\cdot, \cdot). Set

$$\langle \alpha, \beta \rangle = \frac{2(\alpha, \beta)}{(\alpha, \alpha)}.$$
Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions

The Alcove Walk Model

An Introduction to Folding

References
The alcoves are the triangles in the alcove diagram.
The alcoves are the triangles in the alcove diagram.

\[W_{\text{aff}} \leftrightarrow \{ \text{alcoves} \} \]
Alcoves

The alcoves are the triangles in the alcove diagram.

\[W_{\text{aff}} \leftrightarrow \{ \text{alcoves} \} \]

The affine Weyl group:

\[W_{\text{aff}} := \langle s_i \mid 0 \leq i \leq n \rangle \]
Alcoves

The alcoves are the triangles in the alcove diagram.

\[W_{\text{aff}} \leftrightarrow \{ \text{alcoves} \} \]

The affine Weyl group:

\[W_{\text{aff}} := \langle s_i \mid 0 \leq i \leq n \rangle \]

where the \(s_i \) are reflections over certain hyperplanes.
The alcoves are the triangles in the alcove diagram.

\[W_{\text{aff}} \leftrightarrow \{ \text{alcoves} \} \]

The affine Weyl group:

\[W_{\text{aff}} := \langle s_i \mid 0 \leq i \leq n \rangle \]

where the \(s_i \) are reflections over certain hyperplanes.

\[W := \langle s_i \mid 1 \leq i \leq n \rangle \]

is the finite Weyl group.
The Alcove Walk Model for \mathfrak{sl}_3
The Alcove Walk Model for \mathfrak{sl}_3
The affine hyperplanes are

\[H_{\alpha_i + j\delta} := \{ \beta \in \mathfrak{h}_\mathbb{R}^* \mid \langle \alpha_i, \beta \rangle = j \}. \]
Hyperplanes and Reflections

The affine hyperplanes are

\[H_{\alpha_i + j\delta} := \{ \beta \in \mathfrak{h}_R^* \mid \langle \alpha_i, \beta \rangle = j \}. \]

The affine reflection over \(H_{\alpha_i + j\delta} \) is

\[s_{\alpha_i + j\delta}(\beta) := \beta - (\langle \alpha, \beta \rangle + j)\alpha_i. \]
Hyperplanes and Reflections

The affine hyperplanes are

\[H_{\alpha_i + j\delta} := \{ \beta \in \mathfrak{h}^*_R \mid \langle \alpha_i, \beta \rangle = j \} \].

The affine reflection over \(H_{\alpha_i + j\delta} \) is

\[s_{\alpha_i + j\delta}(\beta) := \beta - (\langle \alpha, \beta \rangle + j)\alpha_i. \]

\(\{\alpha_1, \ldots, \alpha_n\} \) form a basis for a root system.
Hyperplanes and Reflections

The affine hyperplanes are

\[H_{\alpha_i+j\delta} := \{ \beta \in h_R^* \mid \langle \alpha_i, \beta \rangle = j \}. \]

The affine reflection over \(H_{\alpha_i+j\delta} \) is

\[s_{\alpha_i+j\delta}(\beta) := \beta - (\langle \alpha, \beta \rangle + j)\alpha_i. \]

\(\{\alpha_1, \ldots, \alpha_n\} \) form a basis for a root system. Think of \(\alpha_0 \) as the highest root \(\varphi \) (highest weight of adj. rep.).
Hyperplanes and Reflections

The affine hyperplanes are

\[H_{\alpha_i + j\delta} := \{ \beta \in \mathfrak{h}_\mathbb{R}^* \mid \langle \alpha_i, \beta \rangle = j \}. \]

The affine reflection over \(H_{\alpha_i + j\delta} \) is

\[s_{\alpha_i + j\delta}(\beta) := \beta - (\langle \alpha, \beta \rangle + j)\alpha_i. \]

\(\{\alpha_1, \ldots, \alpha_n\} \) form a basis for a root system. Think of \(\alpha_0 \) as the highest root \(\varphi \) (highest weight of adj. rep.).

\[W_{\text{aff}} = \langle s_i := s_{\alpha_i} \mid 0 \leq i \leq n \rangle. \]
The Case for \mathfrak{sl}_3
The Case for \mathfrak{sl}_3
The Case for \(\mathfrak{sl}_3 \)

\[
\begin{align*}
W & \cong S_3 \quad \text{and} \quad W_{\text{aff}} \cong \tilde{S}_3.
\end{align*}
\]
The Case for \mathfrak{sl}_3

The highest root is

$$\varphi = \alpha_1 + \alpha_2.$$
The Alcove Walk Model for $\mathfrak{s}_{\frac{1}{3}}$
The Alcove Walk Model for \(\mathfrak{sl}_3 \)

\[H_{\alpha_2 + \delta} \quad H_{\alpha_2} \quad H_{-\alpha_2 + \delta} \]

\[\begin{align*}
H_{\alpha_1 + \delta} & \quad H_{\alpha_1} & \quad H_{\alpha_1 + \delta} \\
- & \quad + & \quad - & \quad + & \quad - & \quad + \\
+ & \quad - & \quad + & \quad - & \quad + & \quad - \\
\end{align*} \]
Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions
The Alcove Walk Model
An Introduction to Folding
References

The Coroot Lattice
The Coroot Lattice

The centers of hexagons are in bijective correspondence with Q^\vee:
The Coroot Lattice

The centers of hexagons are in bijective correspondence with Q^\vee:

$$Q^\vee := \mathbb{Z}\alpha_1^\vee + \cdots + \mathbb{Z}\alpha_n^\vee$$
The Coroot Lattice

The centers of hexagons are in bijective correspondence with Q^\vee:

$$Q^\vee := \mathbb{Z}\alpha_1^\vee + \cdots + \mathbb{Z}\alpha_n^\vee$$

where

$$\alpha_i^\vee := \frac{2\alpha_i}{(\alpha_i, \alpha_i)}.$$
The Coroot Lattice

The centers of hexagons are in bijective correspondence with Q^\vee:

$$Q^\vee := \mathbb{Z}\alpha_1^\vee + \cdots + \mathbb{Z}\alpha_n^\vee$$

where

$$\alpha_i^\vee := \frac{2\alpha_i}{(\alpha_i,\alpha_i)}.$$

Also,

$$W_{\text{aff}} \cong W \rtimes Q^\vee$$

under translation by Q^\vee.
The Case for \mathfrak{sl}_3
The Case for \mathfrak{sl}_3
The Case for \mathfrak{sl}_3

\[Q^\vee = \mathbb{Z}\alpha_1^\vee + \mathbb{Z}\alpha_2^\vee \quad \text{and} \quad \tilde{S}_3 \cong S_3 \rtimes Q^\vee. \]
The Alcove Walk Model for \mathfrak{s}_3
The Alcove Walk Model for \mathfrak{sl}_3
• 1 lies on the positive side of the H_{α_i}
Hyperplane Orientation

- 1 lies on the positive side of the H_{α_i}
- $H_{\alpha_i+j\delta}$ and H_{α_i} have parallel orientations.
Hyperplane Orientation

- 1 lies on the positive side of the H_{α_i}
- $H_{\alpha_i + j\delta}$ and H_{α_i} have parallel orientations.

These facts dictate most of the combinatorics about the walk.
The Alcove Walk Model for \mathfrak{s}_3
The Alcove Walk Model for \mathfrak{sl}_3

\[H_{\alpha_2 + \delta} \quad H_{\alpha_2} \quad H_{-\alpha_2 + \delta} \]

\[H_{\alpha_0} \quad H_{\varphi} \quad H_{\varphi + \delta} \]

\[s_2, \quad s_1, \quad w_0, \quad s_2 s_1, \quad s_1 s_2 \]
Outline

1. Whittaker Functions
2. The Alcove Walk Model
3. An Introduction to Folding
4. References
An Alcove Walk

The walk for $w = s_1s_2s_0s_1$ is

\[
H_{\alpha_2+\delta} \quad H_{\alpha_2} \quad H_{-\alpha_2+\delta}
\]

\[
H_{-\alpha_1+\delta} \quad H_{\alpha_1} \quad H_{\alpha_1+\delta}
\]

\[
+ \quad - \quad + \quad - \quad + \quad -
\]

\[
+ \quad H_{\alpha_0} \quad - \quad + \quad \varphi \quad - \quad + \quad H_{\varphi_+\delta}
\]

\[
+ \quad H_{\varphi} \quad - \quad + \quad \varphi \quad - \quad + \quad H_{\varphi+\delta}
\]

\[
\varphi \quad - \quad \varphi \quad - \quad \varphi \quad - \quad \varphi \quad - \quad \varphi
\]
An Alcove Walk

The walk for $w = s_1s_2s_0s_1$ is

\[H_{\alpha_2+\delta} \quad H_{\alpha_2} \quad H_{-\alpha_2+\delta} \]

\[+ \quad - \quad + \quad - \quad + \]

\[\ldots \quad \ldots \quad \ldots \quad \ldots \]

\[H_{\alpha_0}, \quad H_{\varphi}, \quad H_{\varphi+\delta}, \quad H_{-\alpha_1+\delta}, \quad H_{\alpha_1}, \quad H_{\alpha_1+\delta} \]
An Alcove Walk

The walk for $w = s_1 s_2 s_0 s_1$ is

\[
\begin{align*}
H_{\alpha_2 + \delta} & \quad H_{\alpha_2} & \quad H_{-\alpha_2 + \delta} \\
- & \quad + & \quad - & \quad + \\
| & \quad | & \quad | & \quad |
\end{align*}
\]
An Alcove Walk

The walk for \(w = s_1 s_2 s_0 s_1 \) is

\[
\begin{align*}
H_{\alpha_2 + \delta} & \quad H_{\alpha_2} & \quad H_{-\alpha_2 + \delta} \\
- & \quad + & \quad - & \quad + & \quad +
\end{align*}
\]

\[
\begin{align*}
H_{-\alpha_1 + \delta} & \quad H_{\alpha_1} & \quad H_{\alpha_1 + \delta} \\
+ & \quad - & \quad + & \quad - & \quad -
\end{align*}
\]
The walk for $w = s_1 s_2 s_0 s_1$ is
Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions
The Alcove Walk Model
An Introduction to Folding
References
We label each step of the walk with elements in a finite field \mathbb{F}_q.
We label each step of the walk with elements in a finite field \mathbb{F}_q. It is a fact that

$$|wl| \leftrightarrow \{ \text{walks to } w \text{ with labels in } \mathbb{F}_q \}.$$
Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions

The Alcove Walk Model

An Introduction to Folding

References
Folding

Turns steps of the form

\[H_{\pm \alpha_i + j\delta} \]

or

\[H_{\pm \alpha_i + j\delta} \]
Turns steps of the form

\[H_{\pm \alpha_i + j\delta} \]

into

\[H_{\pm \alpha_i + j\delta} \]
Folding

Turns steps of the form

\[H_{\pm \alpha_i + j\delta} \]

into

\[H_{\pm \alpha_i + j\delta} \]

or

\[H_{\pm \alpha_i + j\delta} \]

If \(c = 0 \) we cannot fold and if \(c \neq 0 \) we must fold!
A Folded Walk

Whittaker functions and the alcove walk model

Neelima Borade, Matthew Huynh, Henry Twiss

Whittaker Functions

The Alcove Walk Model

An Introduction to Folding

References
Let $w = s_1 s_2 s_0 s_1$ with labels $(0, 0, c, 0)$.
Let $w = s_1 s_2 s_0 s_1$ with labels $(0, 0, c, 0)$.
Let $w = s_1 s_2 s_0 s_1$ with labels $(0, 0, c, 0)$. The folded walk is

$$H_{\alpha_2 + \delta} \quad H_{\alpha_2} \quad H_{-\alpha_2 + \delta}$$

$$H_{\alpha_1 + \delta} \quad H_{\alpha_1} \quad H_{\alpha_1 + \delta}$$

$$H_{-\alpha_1 + \delta}$$

$$H_{\varphi + \delta}$$

$$H_{\varphi}$$

$$H_{\alpha_0}$$
Folded Walks and Double Cosets

Two facts from Parkinson-Ram-Schwer:
Two facts from Parkinson-Ram-Schwer:

\[
\begin{align*}
\left\{ \text{labeled walks to } w \text{ that positively fold to } v_1 \right\} & \leftrightarrow U^- v_1 I \cap lwI.
\end{align*}
\]
Folded Walks and Double Cosets

Two facts from Parkinson-Ram-Schwer:

\[
\begin{align*}
\{ \text{labeled walks to } w \text{ that positively fold to } v_1 \} & \longleftrightarrow U^+ v_1 l \cap lw_1. \\
\{ \text{labeled walks to } w \text{ that negatively fold to } v_2 \} & \longleftrightarrow U^- v_2 l \cap lw_l.
\end{align*}
\]
Folded Walks and Double Cosets

Two facts from Parkinson-Ram-Schwer:

\[
\{ \text{labeled walks to } w \text{ that positively fold to } v_1 \} \longleftrightarrow U^- v_1 l \cap lw l.
\]

\[
\{ \text{labeled walks to } w \text{ that negatively fold to } v_2 \} \longleftrightarrow U^+ v_2 l \cap lw l.
\]

From Beazley-Brubaker:

\[
\{ \text{labeled walks to } w \text{ that positively fold to } v_1 \text{ and negatively fold to } v_2 \} \longleftrightarrow U^- v_1 l \cap lw l \cap U^+ v_2 l.
\]
Folded Walks and Double Cosets

Two facts from Parkinson-Ram-Schwer:

\[
\{ \text{labeled walks to } w \text{ that positively fold to } v_1 \} \longleftrightarrow U^- v_1 l \cap lw l.
\]

\[
\{ \text{labeled walks to } w \text{ that negatively fold to } v_2 \} \longleftrightarrow U^+ v_2 l \cap lw l.
\]

From Beazley-Brubaker:

\[
\left\{ \begin{array}{l}
\text{labeled walks to } w \\
\text{that positively fold to } v_1 \\
\text{and negatively fold to } v_2
\end{array} \right\} \longleftrightarrow U^- v_1 l \cap lw l \cap U^+ v_2 l.
\]

This last bijection makes our Whittaker functions extremely computable!
Outline

1. Whittaker Functions
2. The Alcove Walk Model
3. An Introduction to Folding
4. References
We thank the NSF RTG grant supporting this work with grant no. DMS-1745638.