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1 Introduction

This paper explores The Rule of Three, the phenomenon where for some sequences in a ring,
all elements in the sequence satisfy a commutation relation precisely when the relation is
satisfied by subsets of size three and fewer.

This behavior has been seen in some notable cases. Kirillov [3] shows that elementary
symmetric polynomials in noncommuting variables commute (and, in some cases, all Schur
functions) when elementary symmetric polynomials of degree at most three commute when
restricted to at most three of the variables. Generalizing this, Blasiak and Fomin [1] give a
wider theory for rules of three of generating functions over rings via rules of three in sums
and products.

In this report we detail our attempts to apply the general theory to interesting specific cases.
Namely, we consider Schur Q-functions and loop symmetric functions. In the former case, we
give a conjecture for a rule of three, and give progress towards a proof for the said conjecture,
emulating the structure of the proof given for super elementary symmetric functions in [1].
In the latter case, we find negative results.

2 Background

First, we give some notation. Let ek and hk denote the kth elementary symmetric polynomial
and kth homogeneous symmetric polynomial, respectively. We use the standard definition, in
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both the commutative and noncommutative sense:

ek(x1, · · · , xn) =
∑

1≤j1<···<jk≤n

xjk · · · xj1

hk(x1, · · · , xn) =
∑

1≤j1≤···≤jk≤n

xj1 · · · xjk

For x1, . . . , xn and S ⊂ [n] with S = {s1 < s2 < · · · < sk}, let ei(xS) denote the polynomial
with xs1 through xsk as variables. However, when speaking of xS in other contexts, it will
denote the product xskxsk−1

· · ·xs1 . Note that we multiply in descending order; when we
want to explicitly give the order for multiplying we will add an arrow in the superscript.
For example, x↑S will be multiplying in ascending order. Finally, let [x, y] = xy − yx be the
commutator in the standard sense.

[6] gives some definitions that we reproduce here. A strict partition of n is a sequence
λ = (λ1, λ2, . . . , λ`) ∈ Z` such that λ1 > λ2 > · · · > λ`. The corresponding shifted diagram of
λ is an array of square cells in which the ith row has λi cells, and is shifted i− 1 units to the
right with respect to the top row.

A (semistandard) shifted Young tableau T of shape λ is a filling of a shifted diagram λ with
letters from the alphabet A = {1′ < 1 < 2′ < 2 < · · · } such that:

• Rows and columns are weakly increasing;

• Each column has at most one k for k ∈ {1, 2, · · · };

• Each row has at most one k for k ∈ {1′, 2′, · · · }.

These allow us to define the Schur Q-functions Qλ for a shifted partition λ.

Definition. Qλ(x1, . . . , xn) ∈ Q[x1, . . . , xn] can be defined in any of the following equivalent
ways: [7]

(a) For a tableau T with content (a1, a2, . . .) (we ignore the distinction between primed
and unprimed entries here), define xT = xa11 x

a2
2 · · · . Then Qλ =

∑
shape(T )=λ x

T , where
we sum over shifted tableaus T .

(b) Let qk be the kth coefficient of the product of generating functions
∏n

i=1 fi, where

fi =
1 + xit

1− xit
= 1 + 2(xit+ x2i t

2 + · · · )

And let

Q(k1,k2) = qk1qk2 +

k2∑
i=1

(−1)iqk1+iqk2−i

Then for λ with ` parts,

Qλ =

{
pf[Q(λi,λj)]1≤i<j≤` ` even

pf[Q(λi,λj)]1≤i<j≤`+1 ` odd

where pf is the Pfaffian, and λ`+1 = 0 when ` is odd.
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These are symmetric (although that is not obvious), and in fact, the Schur Q-functions
generate a subalgebra of the space of symmetric functions, namely ([5] 2.5)

Q[qk] = Q[p2k+1] where pk =
∑
i

xki

Further, ([5] 2.6)

qk =
∑

(i1,i3,...,ip)
k=i1+3i3+...+pip

2i1+···+ip

i1! · · · ip!

(p1
1

)i1 (pp
p

)ip
So this immediately gives us that q2k+1 is an algebraically independent generating set of Λ
(at least in the commutative case).

3 Results

3.1 Schur-Q functions, noncommutative case hook reading

To move Schur Q-functions to the noncommutative case, we need to decide on a method for
reading the tableau. Following [6], we will use the hook reading, which preserves elementary
properties of commutative Schur Q-functions. In this context, Q(k), which we will refer to as
qk, is defined as follows:

Definition. qk(x1, . . . , xn) ∈ Q〈x1, . . . , xn〉 can be defined in any of the following equivalent
ways:

(a) The standard tableaux definition of qk, except xT is defined by reading the unprimed
entries right to left, then the primed entries left to right. For example, if

T = 1 1′ 2′ 4 5′ 5′ 6

then xT = (x6x4x1)(x1x2x5x5).

(b) Let gi = 1 + xit and let hi = (1 − xit)−1. qk is the kth coefficient of the product of
generating functions

1∏
i=n

gi

1∏
i=n

hi

(c) qk is the sum of monomials whose subscripts strictly decrease, then nonstrictly increase,
with a factor of two added.

Evidence from Sage suggests that a rule of 3 is possible. Namely, with three commuting
variables, [q3, q5] is contained in the ideal generated by all of the relations only using qk for
k at most three. Further, with two commuting variables, all relations of degree at most
k + 1 (that is, [qi, q] for i+ j ≤ k + 1) are contained in the ideal generated by the relations
involving qi and q1 for i at most k. Notice that we only need to worry about qk for k odd,
since commutation relations hold for even k when they hold for odd k by 2.
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Consider some noncommuting variables x1, . . . , xN , and notate the elements of S ⊂ [N ] by
S = {s1 < s2 < · · · < sn}. Then we define qk(xS) as the Schur Q-function in n variables
where xi is replaced with xsi . We conjecture the following:

Conjecture 3.1. Let x1, . . . , xN , y1, . . . , yN be elements of a ring A. The following are
equivalent:

• qk(xS) and q`(yS) commute for all S, k, `.

• the above holds when k = 1 or ` = 1, and for all S

We have found no evidence to support anything stronger; the statement does not hold when
the second case is restricted to |S| ≤ 3, and it does not hold when the second case specifies
kl ≤ 5.

We can rewrite this in terms of generating functions, as done in [1], most similarly to
Lemma 8.2 in the cited paper.

Conjecture 3.2. Let A be a ring, and let x1, . . . , xN , y1, . . . , yN ∈ A satisfy

[xa, yb] = [ya, xb] for all 1 ≤ a ≤ b ≤ N

Further, let

ai = 1 + xit bi = 1− xit
αi = 1 + yis βi = 1− yis

Notice that this implies that all expresssions of the same index commute: xi, yi, ai, bi, αi, βi
commute with each other (along with their inverses). Further, suppose that the following
relations are satisfied: [∑

i∈S

xi, αS(βS)−1

]
= 0[∑

i∈S

yi, aS(bS)−1

]
= 0

Then a[N ](b[N ])
−1α[N ](β[N ])

−1 = α[N ](β[N ])
−1a[N ](b[N ])

−1.

We would like to give this statement without explicitly defining ai, bi, αi, and βi, instead
giving only the relations that are necessary for the proof. However, we do not know the full
list of relations necessary. This is covered more in 3.5.

We can prove that rephrasing the conjecture in terms of generating functions indeed gives us
an equivalent statement.

Theorem 3.3. 3.1 and 3.2 are equivalent.
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Proof. Using ai, bi, αi, βi as specified, the two relations in 3.1 are equivalent as follows:[∑
i∈S

xi, αS(βS)−1

]
=

[
q1(xS),

∑
i≥0

qi(yS)si

]
= 0 ⇐⇒ [q1(xS), qi(yS)] = 0 ∀ i[∑

i∈S

yi, aS(bS)−1

]
=

[
q1(yS),

∑
i≥0

qi(xS)ti

]
= 0 ⇐⇒ [q1(yS), qi(xS)] = 0 ∀ i

The [xa, yb] = [ya, xb] condition is implied by [q1, q1] = 0 for |S| ≤ 2. Further,

[
a[n](b[n])

−1, α[n](β[n])
−1] =

[∑
i≥0

qi(xS)ti,
∑
j≥0

qj(yS)sj

]
= 0

if and only if [qi(x[n]), qj(y[n])] = 0 ∀ i, j

While this only gives us the statement for the set of variables indexed by [n], the set of
conditions hold for all S ⊂ [n], so we can restrict to some T and get the statement for every
subset as well.

We can reproduce some lemmas that act as an analogue for those in the proof of Lemma 8.2
in [1].

Lemma 3.4 (6.1 analogue). Let R be a ring, and let xi, xj, αi, βi, αj, βj satisfy the following
conditions:

• all elements of the same index commute

• [xi + xj, αjαiβiβj] = 0

Then (αj[αi, xj]− [xi, αj]αi)βiβj = αjαi([xj, βi]βj − βi[βj, xi]).

Remark 3.5. In the proof of Blasiak-Fomin 8.2, this lemma is enough to prove the statement
for N = 2. However, considering the two equations we get from applying 3.4 to the relations
from 3.2:

(α2[α1, x2]− [x1, α2]α1)β
−1
1 β−12 = α2α1([x2, β

−1
1 ]β−12 − β−11 [β−12 , x1])

(a2[a1, y2]− [y1, a2]a1)b
−1
1 b−12 = a2a1([y2, b

−1
1 ]b−12 − b−11 [b−12 , y1])

Sage computation confirms that these relations, along with the commutation relations given
in 3.2, are not enough to prove that a2a1b1b2 and α2α1β1β2 commute. Thus, an attempt at
a proof must use more than what is presented in this paper; we suspect this may involve a
relation in bs and βs, since we have a relation among as and αs; arithmetic suggests that
having more analogous relations would give progress towards the desired result.

This also shows that we cannot generalize 3.2 to arbitrary ai, bi, αi, and βi, as is done in
Lemma 8.2 in Blasiak-Fomin. We will need to find the complete list of relations necessary in
the specific case to do so.
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We have also considered the weakened version of allowing xi and xj to commute when
|i− j| > 1, as is done in [2].

Conjecture 3.6. 3.1 and 3.2 hold when [xi, xj] = [xi, yj] = [yi, yj] = 0 for |i− j| > 1.

This allows us to give an analogue to 6.4.

Lemma 3.7 (6.4 analogue). Suppose:[∑
i∈S

xi, α
↓
Sβ
↑
S

]
= 0 for all S ⊂ {1, . . . , N}

And suppose [xi, αk] = [xi, βk] = 0 for nonadjacent i, k. Then, for any S = {s1 < · · · < sm},

([xsm−1 , αsm ]αsm−1 − αsm [αsm−1 , xsm ])αUβS = αSβU(βsm−1 [βsm , xsm−1 ]− [xsm , βsm−1 ]βsm)

Proof. Let T = S \ sm and let U = S \ {sm, sm−1}. Then[∑
i∈S

xi, α
↓
Sβ
↑
S

]
= [xsm , αsmαTβTβsm ] +

[∑
i∈T

xi, αsmαTβTβsm

]

= αsm [xsm , αTβT ]βsm +

[∑
i∈T

xi, αsm

]
αTβS + αSβT

[∑
i∈T

xi, βsm

]
= αsm [xsm , αTβT ]βsm + [xsm−1 , αsm ]αTβS + αSβT

[
xsm−1 , βsm

]
And the statement follows.

3.2 Negative Results

When generalizing Schur Q-functions to the noncommutative case, we can also consider the
less natural choice of reading shifted tableaus in descending order from right to left. This is
equivalent to using the generating polynomial f in the non-commutative setting.

That is, define qk in the non-commutative case as the kth coefficient of the product of
generating functions

∏
fi from 1 to n, where

fi = (1 + xit)(1− xit)−1

In this case, we immediately get the following result from Theorem 2.5 of [1]:

Corollary 3.8. The following are equivalent:

• [qk(uS), q`(uS)] = 0 for any k, `, S ⊂ N

• the above holds for |S| = 2, 3.
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However, this theorem, unlike typical rules of three, does not allow for two sets of non-
commuting variables. Notice that Conjecture 2.3 of [1], if proved, would allow for two sets of
non-commuting variables.

Also notice that this corollary has no restriction on k and `. Computational evidence suggests
that we cannot restrict k, ` ≤ 5, and we also cannot restrict to either k or ` being 1.

We define loop elementary symmetric functions on n flavors through the generating function
called the whirl matrix, [4] 

1 a
(1)
i 0 · · · 0

0 1 a
(2)
i · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

a
(n)
i t 0 0 · · · 1


The product of these are

Pij =

b i−j+m
n c∑
k=0

e
(i)
kn−(i−j)t

k

where the superscript on e is the flavor of the first element in all of the monomials, n is the
number of flavors, and m is the number of generating functions in the product.

Computing the three-flavor three-variable case suggests that a rule of three for these functions
does not exist: when degree one loop symmetric polynomials commute with degree two and
degree three polynomials, we do not get commutation between degree two and degree three
polynomials. Because we are working with only one set of non-commuting variables, this has
been true for all of the rules of three mentioned in this paper.

4 Further Directions

In following the form of Blasiak and Fomin’s proof of Lemma 8.2, we have achieved the
following in the standard case and in the weakened case (where nonadjacent variables
commute).

6.1 6.2 6.3

8.1 4 6.4

�

In the diagram, 4 represents the N = 2 case, and � represents a full proof. Thus, any
progress on 8.1 would result in a significant result.

Beyond proving the conjecture, we can also ask when commutativity of qk, the elementary
Schur Q-functions, extends to all Schur Q-functions, as is explored in [2]. In the weakened
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case, this phenomenon may occur, since the question reduces to deciding whether the Pfaffian
formula holds true in the noncommutative case.

A Code

All code mentioned is located at: https://github.com/ewin-t/ruleof3qschur

The README in the repository explains the precise content of the code.

References

[1] Jonah Blasiak and Sergey Fomin. “Rules of Three for commutation relations”. In: Journal
of Algebra (2017).

[2] Sergey Fomin and Curtis Greene. “Noncommutative Schur functions and their applica-
tions”. In: Discrete Mathematics 306.10 (2006), pp. 1080–1096.

[3] Anatol N Kirillov et al. “Notes on Schubert, Grothendieck and key polynomials”. In:
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 12 (2016),
p. 034.

[4] Thomas Lam. “Loop symmetric functions and factorizing matrix polynomials”. In: Fifth
International Congress of Chinese Mathematicians. Part. Vol. 1. 2. 2012, pp. 609–627.

[5] Piotr Pragacz. “Algebro — Geometric applications of schur s- and q-polynomials”. In:
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