 on the work of Adin \& Roichman

Vic Reined January 10, 2022

Reflections: On the occasion of Ron Adin's and Yuval Roichman's $60^{\text {th }}$ birthdays

- Ron teaches me the beauty of colorful trees
- Ron \& Yuval help me to appreciate Escher
- Ron \& Yuval beat me (and Gerhard, Götz and Matt) to the punch! Röhrle Pfeiffer Douglas
- Ron teaches me the beauty of colorful trees

As a grad student, Ron spoke at an important conference (Stockholm 1989) on this:
\qquad
I was there as a grad student, at my first conference, ... and missed his talk!

Q: (to Ron) What's a colorful multidimensional tree?

A (spanning) tree in a 1-dim'l simplicial complex λ (graph)
is a subset T of 1 -simplices indexing a (edges)
basis for the column space of $C_{1}(\Delta, \mathbb{Q}) \xrightarrow{\partial_{1}} C_{0}(\Delta, \mathbb{Q})$

THEOREM (Borchardt 1860, Cayley 1889)
The complete graph K_{n} has n^{n-2} spanning trees.
cog.
K_{5}
 has

$$
5^{3}=125=60+60+5 \text { spamming trees }
$$

THEOREM (Fiedler a Sedlăcek 1958)
The complete bipartite graph $K_{n_{1}, n_{2}}$ has $n_{1}^{n_{2}-1} \cdot n_{2}^{n_{1}-1}$ spanning trees. e.g. ${ }_{1}^{0}{ }_{1}^{0}$ has $2^{3-1} \cdot 3^{2-1}=12=9+3$ spanning trees $K_{2,3}$ has $2^{3-1} \cdot 3^{2-1}=12=9+3$

DEF'N: (Kalai 1983, Adin 1989)
A tee in ad-dim'l simplicial complex Δ
is a subset T of d-simplices indexing a
basis for the column space of $C_{d}(\Delta, \mathbb{Q}) \xrightarrow{\partial_{d}} C_{d-1}(\Delta, \mathbb{Q})$
e.g. the 2-skeleton of a simplex on vertices $\{0,1,2,3,4,5\}$ has these two spanning trees, among others:
$T_{1}=$ cone over complete graph K_{5}

$T_{2}=$
6 -vertex triangulation of $\mathbb{R} P^{2}$

THEOREM (Kalai 1983) The complete d-complex, ie., the d-skeleton Δ of the simplex on n vertices,

$$
\text { has } \leq n^{\left(n_{-2}\right)^{2}} \text { trees, since } n^{\binom{n-2}{d}}=\sum_{\substack{\text { trees } T \\ \ln \Delta}}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2}
$$

Gil's proof uses Binet-Canchy Theorem to evaluate $\operatorname{det}(\underbrace{\bar{\partial}_{d}} \bar{\partial}_{d}^{\top})$ and compare it to an eigenvalue calculation.

THEOREM (Adin 1989)
The complete r-colorful (or r-partite) complex $k_{n, n_{2}, \ldots, n_{r}}$ which is the r-fold simplicial join of 0 -dim'l complexes

has $\leq n_{1}^{x_{1}} n_{2}^{x_{2}}-n_{r}^{x_{r}}$ trees, where $x_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(n_{j-1}\right)$,
since $n_{1}^{X_{1}} n_{2}^{X_{2}}-n_{r}^{X_{r}}=\sum_{\substack{\operatorname{treses} T}}\left|\tilde{H}_{d-1}(T, Z)\right|^{2}$

- Bolker 1976 working on transportation polytopes had guessed the $n_{1}^{x_{1}} x_{2} x_{2} x_{r}$ count for trees was close, but wrong due to colorful trees with torsion, such as this colorful triangulation of $\mathbb{R} P^{2}$ inside $K_{3,3,3}$:

- Ron's Theorem actually counts trees in any skeleton of the complete r-partite complex
- He developed a new use of the Binet-Cauchy formula to interpret psendodeterminants of Laplacians $\partial_{i} \partial_{i}^{\top}$ (avoiding Gil's clever choice of a reduced Laplacian)
- These methods inspired much, much later work by Bernardi, Duval, Klivans, Kook, Lee, Martin, Maxwell and others.
- It led Martin, Musiker and me to an unexpected connection with roots of unity and cyclotomic polynomials...

Consider $n=p_{1} p_{2} \cdots p_{r}$ squarefree, so p_{i} are distinct primes.
Let $\xi=e^{\frac{2 \pi i}{n}}$ and $\mathbb{Q}(\xi)$ the $n^{\text {th }}$ eyclotomic extension of \mathbb{Q}
THEOREM (Martin-R. 2005) For squarefree $n=p_{1} p_{2} \ldots p_{r}$,

$$
\left\{\begin{array}{l}
\mathbb{Q}-\text { bases } \\
\left.\left.B \subset\{1,\},\}^{2}, \ldots,\right\}^{n-1}\right\} \\
\text { for } \mathbb{Q}(\xi)
\end{array}\right\} \quad \text { biject with }\left\{\begin{array}{l}
\binom{\text { colorful, }}{\text { multidimensional }} \\
\text { trees } T \text { in } K_{p_{1}, p_{2,-},} P_{r}
\end{array}\right\}
$$

$B \longmapsto$ tree T whose facets have simplices

$$
\left\{\left(\left(_{\bmod p_{1}}^{j_{2}}, j_{\text {mod } p_{2}}, \ldots, \bmod p_{r}\right)\right\}_{j \in \mathbb{Z} / n \mathbb{Z},}\right.
$$

$$
\begin{aligned}
& n=6=2 \cdot 3 \\
& Q(\xi)
\end{aligned}
$$

$$
\begin{aligned}
& K_{2,3} \\
& \text { complete } \\
& \text { bipartite } \\
& \text { graph }
\end{aligned}
$$

THEOREM (Musiker-R.2014)
For $n=p_{1} p_{2}-P_{r}$ squarefree, the cyclotomic polynomial

$$
\Phi_{n}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{\phi(n)} x^{\phi(n)}
$$

has $c_{j} \neq 0$ exactly when the facets of $K_{p_{1}, p_{2,}, p_{r}}$ indexed by

$$
\{\phi(n)+1, \phi(n)+2, \ldots, n-2, n-1\} \quad \cup\{j\}
$$

form a tree T, in which case $\tilde{H}_{r-2}(T, \mathbb{Z}) \cong \mathbb{Z} /\left|c_{j}\right| \mathbb{Z}$.

$$
n=15=3 \cdot 5
$$

$$
\Phi_{15}(x)=1-x+x^{3}-x^{4}+x^{5}-x^{7}+x^{8}
$$

$$
\begin{aligned}
n=105 & =3 \cdot 5 \cdot 7 \\
\Phi_{105}(x) & =x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2 x^{41}-x^{40}-x^{39}+x^{36}+x^{35}+x^{34} \\
& +x^{33}+x^{32}+x^{31}-x^{28}-x^{26}-x^{4}-x^{22}-x^{20}+x^{17}+x^{16}+x^{15} \\
& +x^{14}+x^{13}+x^{12}-x^{9}-x^{8}-2 x^{7}-x^{6}-x^{5}+x^{2}+x+1
\end{aligned}
$$

is the smallest n for which coefficients $c_{j} \neq \pm 1$ occur, for the same reason trees with homology torsion can't appear inside $K_{n_{1}, n_{2}, \ldots, n_{r}}$ until $r \geq 3$ and $n_{1}, n_{2}, \ldots, n_{r} \geq 3$
$\mathbb{R P}^{2}$

- Ron \& Yuval help me to appreciate Escher

I met Yuval later, but have seen him more often, as he visits friends in Minneapolis. Imet him first when he spoke in our seminar on this great paper
adVances in mathematics 129, 25-45 (1997) article no. AI961629

A Recursive Rule for Kazhdan-Lusztig Characters
Yuval Roichman*
Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
Received November 1, 1996; accepted December 30, 1996
in which descent sets of permutations and tableaux play an important role

DEF'N: For a permutation $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ in S_{n} its descent set $\operatorname{Des}(\omega)=\left\{i: \omega_{i}>\omega_{i+1}\right\}$
e.g. $\operatorname{Des}((3 ; 1,5 ; 2,4))=\{1,3\}$

For a Young tableau Q with entries $\{1,3,2 n\}$ its descent set $\operatorname{Des}(Q)=\left\{i: \begin{array}{l}\text { : } i+1 \text { appears in } \\ \text { lower row than } i\end{array}\right\}$ e.g. $\operatorname{Des}\left(\begin{array}{l}12478 \\ 359 \\ 6\end{array}\right)=\{2,4,5,8\}$

Descent sets...

- generalize to reflection/Coxeter groups W
- play a key role in Kazhdon-Lusztig theory
- have amazing connections to theory of symmetric and quasisymmetric functions through work of Stanley and Bessel

By definition, $\operatorname{Des}(\omega), \operatorname{Des}(Q) \subseteq\{1,2, \ldots, n-1\}$ but an extension to cyclic descent sets for $w \in S_{n}$ was defined by Kyachko 1974 and Cellini 1998
$c \operatorname{Des}(\omega)=\left\{i: \omega_{i}>\omega_{i+1}\right.$ with mdices taken $\left.\begin{array}{r}\text { modulo } n\end{array}\right\}$
e.g. $\operatorname{Des}((3,2,1,5 ; 2,4))=\{1,3,5\}$

Later Rhoades 2010 defined such a cydic extension $c \operatorname{Des}(Q) \subset\{1,2,, n\}$ of $\operatorname{Des}(Q)$ only for rectangular tableaux

using equivanance with respect to adding $1 \bmod n$ and Schïtzenberger's promotion.

$$
1972
$$

DEF'N: Given a descent map $\mathcal{A} \xrightarrow{\text { Des }} 2^{\{1,2,-, n-1\}}$
say a map $\mathcal{A} \xrightarrow{c \text { Dis }} 2^{\{1,2,-, n-1, n\}}$ and a bijection $A \rightarrow P$
give a cyclic descent extension of Des if

$$
\begin{array}{ll}
-\operatorname{CDes}(a) \cap\{1,2,, n-1\}=\operatorname{Des}(a) & \text { (extension) } \\
-\operatorname{cDes}(p(a))=\operatorname{Des}(a)+1 \bmod n & \text { (equivariance) } \\
-\phi \neq \operatorname{CDes}(a) \neq\{1,2, \ldots, n\} & \text { (non-tscher) }
\end{array}
$$

The non-Escher axiom makes the distribution of a Pes unique.

ASCENDING

\& DESCENDING" :ill M.C. Escher

Q:(Ron \& Mural)
When does $\mathcal{A} \xrightarrow{\text { Dis }} 2^{\{1,2,-n-1\}}$ have a cyclic extension?
In particular, for which skew shapes $\lambda \mu \mu$ does it exist for $\mathcal{A}=\{$ standard tableanx of shape $\lambda / \mu\}$?
(A: All but the ribbons met|
They developed better and better techniques for this:
Elizalde-Roichman 20152016
Adin-R.-Roichman 2017
Adin-Elizalde-Roichman 2018
Adin-Gessel - R.- Roichman 2018
Bloom-Elizalde-Roichman 2019
Adin-Hegedirs-Roidman 2019

TEEHNGUE 1:
Gessel's fundamental quasisymmetric function

$$
F_{\operatorname{Des}(a)}=\sum_{\substack{k_{1}=k_{1} \leq \ldots \leq k_{n} \\ k_{i}<k_{i+1} \\ i+i \in \operatorname{Des}(a)}} x_{k_{1}} x_{k_{2}---x_{k_{n}} .}
$$

left's one test if $\mathcal{A} \xrightarrow{\text { Pes }} 2^{\{1,2,-n-1\}}$ has a cyclic extension assuming $Q_{A}:=\sum_{a \in \mathcal{A}} F_{\operatorname{Des}(a)}$ is a symmetric function: ales exists $\Leftrightarrow\left\langle Q_{\mathcal{A}}, \tilde{s}_{\alpha^{c y c}(J, n)}\right\rangle \geqslant 0$
for $\phi \varsubsetneqq J \subsetneq\{1,2, \ldots, n\}$
Cyclic ribbon function of Ron \& Kuval, closely related to a boric Schur function of Postrikar 2005.

TEerHique 2: (Adin-Hegedüs-Roichman 2019)
Assuming $Q_{\mathcal{A}}$ is not only symmetric, but also Sohur-positive, then
cyclic extension DIes for $\& \xrightarrow{\text { Does }} 2^{[1,2,1, n-1]}$ exists
the generating function

$$
M_{\mathcal{A}}(x)=\sum_{k=0}^{n}\left\langle Q_{\mathcal{A}}, \underset{k \mid \text { 组 }}{\substack{n-k}}{ }^{n}\right\rangle x^{k}
$$

lies in $(1+x) \cdot \mathbb{N}[x]$
They applied this to prove...

THEOREM (Adin-Hegediis - Roichman 2019)
The usual descent map on

$$
C_{\lambda}=\left\{\begin{array}{c}
\text { permutations of type } \lambda \\
\text { cycle }
\end{array}\right\} \xrightarrow{\text { Les }} 2^{\{1,2,-, n-1\}}
$$

has a cyclic extension coDes
$\Leftrightarrow \lambda \neq(r, r,-, r)$ for some square free r
Here the symmetric function $Q\left(e_{\lambda}\right)$ is known, via a result of Gessel-Rentenauer 1993, to be the higher Lie character Lien of Thrall 1942

And this is how...

- Ron s Mural beat me
(and Gerhard, Götz and Matt) to the punch!
Douglas, Pfeiffer and Röhtle have extensively studied the S_{n}-repins on $\left(M_{a}+t\right)$) (Götz) (Gerhard)
$H^{i}\left(\operatorname{Con} f\left(n, \mathbb{R}^{d}\right)\right)$, which vanishes unless $i=r(d-1)$ 2 configuration space of n distonet points

Also studied extensively by Sundaram and others.

Danglass, Ifeiffer and Ribhrle more generally study the W-repins on $H^{i}(\underbrace{\mu_{W}}_{\mathbb{R}^{(}} \mathbb{R}^{d})$, which vanishes unless $i=r(d-1)$ real hyperplane arrangement complement for reflection group W

- see talk by Sarah Brawer tomorrow

For example, in 2019 D-P-R proved a conjecture of
Felder-Veselor 2005 on where to find the copies of the bivial W-rep'n in each rep'n $\operatorname{OS}_{[x]}^{W}$.

Q: (asked Roshrle in May 2019)
For each of the exterior powers $\Lambda^{k} V$ of the reflection repin V of W,
how many times does $\Lambda^{k} V$ occur in $L_{[x]}^{W}, O^{W}[x]$?
special cases: $\Lambda^{0} V=$ trivial W-repin
$\Lambda^{n} V=\operatorname{det}_{\substack{\text { or } \\ \text { sign }}} W$-resin

All four of us looked at the data, noticed patterns, for example...
THEOREM (D.P.R.R, unpublished)
The total number of occurrences of all $\Lambda^{k} V$ is always the same for $L_{[x]}^{w}$ as for $O S_{[x]}^{w}$, that is $\left\langle\Lambda V, L_{[x]}^{W}\right\rangle=\left\langle\Lambda V, O_{[x]}^{W}\right\rangle$.

I later heard Yuval speak in Spring 2020 at (Mittog-Leffler ACOW) on Adin-Hegedius - Roichman 2019 and realized they had already answered some of our questions for $W=S_{n}$, since there

$$
\left\langle L_{[x],}^{w}, \Lambda^{k} V\right\rangle=\left\langle Q_{C_{\lambda}, k i l}^{s i l^{n-k}}\right\rangle
$$

exactly what $A-H-R$ needed to analyze!

They had also noticed other patterns, e.g. CONJECTURE (Adin-Hegedüs - Roichman 2019)
For $k=0,1,-, n,\left\langle Q_{C_{\lambda}},{ }_{k} \sum_{i}^{s-k} \|^{n-k}\right\rangle$
is unimodal as a sequence.
Looks the so far, and particularly interesting since the analogue for $W=D_{n}$ seems to fail at $n=7$, ie. $\left\langle L_{[x]}^{D_{n}}, \Lambda^{k} V\right\rangle$ is not unimodal in k for a certain W-orbit $[x]$.

Thank you both Ron and Yuval for teaching me so much, and happy $60^{\text {th }}$ birthdays ∇

