ALGEBRAIC COMBINATORICS:

Using algebra to help one count

Univ. of Minnesota
School of Math.
Jr. Colloquium
Jan. 24, 2006

Vic Reiner
COMBINATORICS
= study of finite or discrete objects
and their structure,
including counting them
(= ENUMERATIVE COMBINATORICS)

Part of
ALGEBRAIC COMBINATORICS

is using algebra to help you do
ENUMERATIVE COMBINATORICS

EXAMPLE:
Enumerating subsets of a set,
up to symmetry.

We'll observe some interesting properties,
some easy,
some harder.
Consider the finite set
\[[n] := \{1, 2, \ldots, n\} \]
with some set G of symmetries
\[(= \text{a subgroup of the symmetric group } S_n \text{ on } n \text{ letters}) \]

e.g. \(n = 6 \)

\[G = \text{rotational symmetries} = \text{cyclic group } C_6 \]

\[= \{ \text{rotations through} \]
\[0^\circ, 60^\circ, 120^\circ, 180^\circ, 240^\circ, 300^\circ \} \]
Let's count

\[2^n : = \text{subsets of } [n] \]

\[\uparrow \]

black-white colorings of \([n]\)

up to equivalence by elements of \(G\),

i.e. \(G\)-orbits of subsets of \([n]\)

\[=: 2^n / G \]

e.g. for \(G = C_6\) as above,

\(G\)-orbits in \(2^n / G\) are sometimes called black-white necklaces:
let's even be more refined...

\[(\binom{n}{k}) = k\text{-element subsets of } [n] \]

The symmetries \(G \) also permute \((\binom{n}{k}) \).

Can we count:

\[(\binom{n}{k})_G := G\text{-orbits of } k\text{-subsets of } [n] \]

Let \(\text{c}_k := | (\binom{n}{k})_G | \)

Q: What can we say in general about \(\text{c}_0, \text{c}_1, \ldots, \text{c}_n \)?

A: They share a number of properties with binomial coefficients \(\binom{0}{k}, \binom{1}{k}, \ldots, \binom{n}{k} \) ...

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
EXAMPLE: \(G = C_6 \)

| \(k \) (= # of blacks) | \(C_6 \)-orbits on \((U_{61}) \) | \(C_k = \left| \frac{(U_{61})}{C_6} \right| \) |
|--------------------------|---------------------------------|-----------------|
| 6 | ![Circle with BB and BBB] | 1 |
| 5 | ![Circle with WBB and BBB] | 1 |
| 4 | ![Circles with WBWB, BBWB, and WWBB] | 3 |
| 3 | ![Circles with WWB, WBB, BWW, and BBW] | 4 |
| 2 | ![Circles with WBB and WWB] | 3 |
| 1 | ![Circle with WWWW] | 1 |
| 0 | ![Circle with WWWW] | 1 |
6 overlays

#1

1

#2

1

SYMMETRY

1

3

1

4

3

1

vi

vi

vi

vi

Unimodality

#3

+1

-1

+3

-4

+3

-1

+1

+2

Alternating sum

(\text{black} \leftrightarrow \text{white})

= \# \text{ of self-complementary } G\text{-orbits}

\text{same necklace}

\text{swap black \& white}

\text{swap black \& white}

\text{same necklace}
The generating function

\[\sum_{k=0}^{n} c_k q^k = c_0 + c_1 q + c_2 q^2 + \ldots + c_n q^n \]

is simply the average over the group \(G \)
of some easy products (recording cycle sizes)

\[G = \{ \begin{cases} \circ \circ \circ & (1+q)^6 \\ \circ \circ \circ \circ & (1+q)^1 \\ \circ \circ \circ \circ \circ & (1+q)^2 \\ \circ \circ \circ \circ \circ \circ & (1+q^3)^2 \\ \circ \circ \circ \circ \circ \circ \circ & (1+q^6)^1 \end{cases} \]
THEOREM:

For any subgroup G of S_n and $c_k = \binom{[n]}{k}/G$, the sequence c_0, c_1, \ldots, c_n

(1) has GENERATING FUNCTION

$$\sum_{k=0}^{n} c_k q^k = \frac{1}{|G|} \sum_{g \in G} \prod_{c \in G} (1 + q^{c_g})$$

(Ryser, Rentfrow)

(2) has ALTERNATING SUM

$$c_0 - c_1 + c_2 - \ldots + (-1)^n c_n = \# \text{ of self-complementary } G \text{-orbits}$$

(de Bruijn)

(3) is SYMMETRIC: $c_i = c_{n-i}$

(nearly obvious)

(4) is UNIMODAL: $c_0 \leq c_1 \leq c_2 \leq \ldots \leq c_{\lfloor \frac{n}{2} \rfloor}$

(Stanley)

(1) - (3) are not hard to show directly

(4) is hard (in fact, not known) without using some sort of linear algebra, algebra or representation theory, but easy with them.
Unified Proof Idea for (1) – (4)

Re-interpret subsets or black/white colorings and G-orbits in terms of (multi-)linear algebra...

Let $V = \mathbb{C}^2$ with C-basis $\{ \mathbf{w}, \mathbf{b} \}$ “white” “black”

Then $V \otimes^n = V \otimes V \otimes \cdots \otimes V$

n times

has C-basis elements e_S indexed by subsets $S \subseteq [n]$

E.g. $n=6$

$S = \{1,3,5\}$

$e_S = \mathbf{b} \mathbf{w} \mathbf{b} \mathbf{w} \mathbf{b} \mathbf{w}$, or just $\mathbf{b} \mathbf{w} \mathbf{b} \mathbf{w} \mathbf{b} \mathbf{w}$
G acts on $V^\otimes n$ by permuting the tensor positions.

$$(V^\otimes n)^G := \text{the } G\text{-fixed subspace of } V^\otimes n$$

has C-basis indexed by G-orbits of subsets or black-white colorings

e.g. $n=6$

$G = C_6$

\[
\begin{array}{cccc}
 B & B & w & w \\
 B & W & w & B
\end{array}
\]

\[\leftrightarrow \quad wbwbw+bwbwwb \in (V^\otimes 6)^G\]
\(V^\otimes n = \bigoplus_{k=0}^{n} (V^\otimes n)_k \) is a graded \(\mathbb{C} \) vector space, span of \(e_S \) with \(|S|=k \)

and \(G \) acts on each graded component \((V^\otimes n)_k\)

so similarly

\[
(V^\otimes n)_G = \bigoplus_{k=0}^{n} (V^\otimes n)_k^G .
\]

with basis corresponding to \((\binom{\mu}{k})^G \)

Thus \(c_k = \dim_{\mathbb{C}} (V^\otimes n)_k^G \)

which gives a good starting point...
Proof of (3) (Symmetry): \(C_k = C_{n-k} \)

(A bit silly, but contains an idea useful for proof of (2)!)

Consider \(\sigma := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{C}) = GL(V) \)

acting on \(V = \mathbb{C}^2 \) by swapping black \(b \) \(\leftrightarrow \) white \(w \)

\(GL(V) \) also acts \(\text{diagonally} \) on \(V^\otimes n \):

\[
\begin{align*}
&v_1 \otimes \cdots \otimes v_n \mapsto \sigma(v_1) \otimes \cdots \otimes \sigma(v_n) \\
&b b b w w b \mapsto w w w b b b
\end{align*}
\]

and this commutes with the \(G \)-action,

so \(\sigma \) preserves \((V^\otimes n)_G \).

In fact, it gives a \(\mathbb{C} \)-vector space isomorphism

\[
(V^\otimes n)_G \cong (V^\otimes n)_{n-k}
\]

so \(\dim(\mathbb{C}, (V^\otimes n)_G)_k = \dim(\mathbb{C}, (V^\otimes n)_G)_{n-k} \)

\(\text{i.e.} \)

\[
C_k = C_{n-k}
\]
Sketch proof of (2) (alternating sum):

\[c_0 - c_1 + c_2 - \ldots + (-1)^n c_n = \# \text{ self-complementary } G\text{-orbits in } 2^{[n]} \]

Note that \(\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) is diagonalizable with eigenvalues +1, -1, so it is conjugate in GL(V) to \(\begin{bmatrix} w & b \\ 0 & -1 \end{bmatrix} \)

Hence \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix} \) should act with the same trace on \((V \otimes \delta)^G \).

Note that \(\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) permutes the basis elements for \((V \otimes \delta)^G \) that are indexed by \(G\)-orbits of subsets, via complementation

\[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

Hence

\[\text{Trace}(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}) : (V \otimes \delta)^G \rightarrow (V \otimes \delta)^G \]

\[= \# \text{ self-complementary } G\text{-orbits in } 2^{[n]} \]
On the other hand,

\[
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} ^{b} \cdot \begin{pmatrix}
\omega \\
b
\end{pmatrix} \quad \omega \mapsto \omega, \quad b \mapsto -b
\]

so \(\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \) acts on \((\bigwedge \omega)^k\) by the scalar \((-1)^k\)

E.g. \(\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} : b b b w w b \mapsto (b)(-b)(-b)w(w)(-b) \)
\[= (-1)^k b b b w w b\]

Hence \(\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \) acts on \((\bigwedge \omega)^G\) by the scalar \((-1)^k\)

and since \((\bigwedge \omega)^G = \bigoplus_{k=0}^{n} (\bigwedge \omega)^G\)

Trace \(\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} : (\bigwedge \omega)^G \to (\bigwedge \omega)^G \) =

\[+ \dim C(\bigwedge \omega)^G_0 - \dim C(\bigwedge \omega)^G_1 + \dim C(\bigwedge \omega)^G_2 - \ldots \]

\[= c_0 \quad c_1 \quad + \quad c_2 \quad - \ldots\]
Sketch proof of (4) (UNIMODALITY): \(c_0 \leq c_1 \leq \ldots \leq c_{\lfloor n/2 \rfloor} \)

We want \(c_k \leq c_{k+1} \) for \(k < \frac{n}{2} \)

i.e. \(\dim_c (V^\otimes n)^G_k \leq \dim_c (V^\otimes n)^G_{k+1} \)

so maybe there's a \(C \) vector space injection

\[
(V^\otimes n)^G_k \hookrightarrow (V^\otimes n)^G_{k+1}
\]

for \(k < \frac{n}{2} \)

In fact, maybe it comes from a \(G \)-equivariant injection

\[
(V^\otimes n)_k \xrightarrow{U_k} (V^\otimes n)_{k+1}
\]

for \(k < \frac{n}{2} \)

Here's an obvious guess for defining \(U_k \):

\[
e_g \xrightarrow{e_g} \sum_{T: T \supset S, \quad |T| = k+1} e_T
\]

for \(|S| = k \)

e.g. \(bwbwbbw \xrightarrow{U_k} bwbwbbw + bbwbwb + bbwbwb \)

It's easily seen to be \(G \)-equivariant,

but why is it injective for \(k < \frac{n}{2} \) ?
Here is one (of several) linear algebra arguments for the injectivity of U_k if $k < \frac{n}{2}$:

Check that

$$U_k^* U_k - U_{k-1}^* U_{k-1} = (n-2k)I_{(V^{\otimes n})_k}$$

for $k = 1, 2, \ldots, n$.

So

$$U_k^* U_k = U_{k-1}^* U_{k-1} + (n-2k)I_{(V^{\otimes n})_k}$$

positive semidefinite

positive definite because $k < \frac{n}{2}$

$$\Downarrow$$

$U_k^* U_k$ positive definite, hence invertible

$$\Downarrow$$

U_k injective.
Sketch proof of (1) (GENERATING FUNCTION):
\[
\sum_{k=0}^{m} C_k q^k = \frac{1}{|G|} \sum_{g \in G} \prod_{c \in C} (1 + q |C|)
\]

When a finite group G acts linearly on a C-vector space U, the averaging operator
\[
\tau_G = \frac{1}{|G|} \sum_{g \in G} \tau_g
\]
is an idempotent projector $\tau_G : U \rightarrow U^G$
\[
(\tau_G^2 = \tau_G)
\]
Hence its trace computes the dimension of the image:
\[
\text{Trace} (\tau_G : U \rightarrow U) = \dim_U (U^G).
\]
Let's apply this with $U = (V^\otimes n)_k$

to compute $\dim_U (U^G) = \dim_U (V^\otimes n)_k = c_k.$
\[
C_\omega = \dim_\mathbb{C}(V^{\otimes n})_\omega^G \\
= \text{Trace} \left(\frac{1}{|G|} \sum_{g \in G} g : (V^{\otimes n})_\omega^G \rightarrow (V^{\otimes n})_\omega^G \right) \\
= \frac{1}{|G|} \sum_{g \in G} \text{Trace} \left(g : (V^{\otimes n})_\omega^G \rightarrow (V^{\otimes n})_\omega^G \right)
\]

Note: \(g \) permutes the basis elements \(e_\omega \) for \((V^{\otimes n})_\omega^G \).

\[e.g. \ g = \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
\]
sends \(\begin{array}{cccccc}
\omega & \omega & \omega & \omega & \omega & \omega
\end{array} \rightarrow \begin{array}{cccccc}
b & w & w & b & w & w
\end{array} \)

and so its trace counts black/white colorings of \([n]\) that it fixes, i.e. those which are monochromatic on each of \(g \)'s cycles.

\[e.g. \ \begin{array}{cccccc}
\omega & \omega & \omega & \omega & \omega & \omega
\end{array} \rightarrow \begin{array}{cccccc}
\omega & \omega & \omega & \omega & \omega & \omega
\end{array} \]

\[1 + 2q^3 + 1q^6 = (1 + q^3)^2\]

Hence
\[
C_\omega = \frac{1}{|G|} \sum_{g \in G} \left(\text{\# of black/white colorings of } [n] \right) \\
\text{with } k \text{ blacks, monochromatic on } g \text{'s cycles}
\]

\[= \frac{1}{|G|} \sum_{g \in G} \left[\text{coefficient of } q^k \text{ in } (1+q|C_1|) \right] \text{ of } g\]

i.e.
\[
\sum_{k=0}^{n} C_\omega q^k = \frac{1}{|G|} \sum_{g \in G} \prod_{\text{cycles } C} (1+q|C_1|).
\]