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Abstract

The main objective of these notes is to illustrate a class of theorems that seem

surprising and very general but use the same ideas that come in invariant theory

and representation theory.
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1.1 Lecture 1: q-counting quotients of Boolean algebras

We start with some important posets (partially ordered sets). Let us recall that a

poset can be represented by a Hasse diagram that depicts the graph whose vertices

are the poset elements and there is an edge {S, T} whenever S l T , i.e., whenever

S is covered by T , meaning S ≤ T and there is no U with S � U � T .

The first example is the Boolean algebra 2[n], where [n] = {1, 2, . . . , n}. The

elements of 2[n] are all the subsets S ⊆ [n], partially ordered by inclusion: S ≤ T

if S ⊆ T . The Boolean algebra with this order is a lattice, i.e., it is a poset such

that every two elements have a unique minimal upper bound and a unique maximal

lower bound. Thus this poset is also called the Boolean lattice.

Example 1.1 (Boolean algebra) The Boolean algebra for n = 4 can be rep-

resented by the Hasse diagram in Figure 1.1. If we record the rank sizes with a
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Rank Rank size

{1, 2, 3, 4} 4 r4 =
(
4
4

)

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}
3 r3 =

(
4
3

)

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} 2 r2 =
(
4
2

)

{1} {2} {3} {4} 1 r1 =
(
4
1

)

∅ 0 r0 =
(
4
0

)

Figure 1.1 Boolean algebra 2[4] together with the ranks and rank sizes rk.

variable q we obtain
(

4
0

)
+
(

4
1

)
q +

(
4
2

)
q2 +

(
4
3

)
q3 +

(
4
4

)
q4 = (q + 1)4. This is the rank

generating function of this ranked poset 2[4].

Proposition 1.2 For integers n, k, with n ≥ k ≥ 0 the following properties hold:

• Symmetry
(
n
k

)
=
(
n

n−k
)
.

• Alternating sum
(
n
0

)
−
(
n
1

)
+
(
n
2

)
+ · · · ±

(
n
n

)
= 0 for n ≥ 1.

• Rank generating function
(
n
0

)
+
(
n
1

)
q +

(
n
2

)
q2 + · · ·+

(
n
n

)
qn = (1 + q)n.

• Unimodality
(
n
0

)
≤
(
n
1

)
≤ · · · ≤

(
n
bn/2c

)
.

We will generalize the properties of the rank sizes in Proposition 1.2 by consid-

ering subgroups of the symmetric group acting on the Boolean algebra 2[n].

1.1.1 Three important examples

Denote by Sn the symmetric group permuting {1, 2, . . . , n}. Consider a permutation

subgroup G ⊆ Sn and the orbit poset 2[n]/G. The G-orbits O are subsets of 2[n],

with the ordering O1 ≤ O2 if there exist S1 ∈ O1 and S2 ∈ O2 having S1 ⊆ S2.

Example 1.3 (black and white necklaces) Let G be the subgroup generated by

an n-cycle G = 〈(1, 2, . . . , n)〉 ⊂ Sn. Then G ∼= Z/nZ has G-orbits O in bijection

with black and white necklaces having n beads, e.g., if n = 6 the orbits are in

correspondence with the necklaces in Figure 1.2.
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Rank size

1

1

3

(0) (1) (2)
4

3

1

1

Figure 1.2 Poset 2[6]/G with G = 〈(1, 2, . . . , 6)〉. Each necklace corresponds to a
G-orbit, e.g., O = {{1, 2, 5}, {2, 3, 6}, {1, 3, 4}, {2, 4, 5}, {3, 4, 6}, {1, 4, 5}} and O′ =
{{1, 3, 5}, {2, 4, 6}} correspond to the orbits labeled (0) and (2) above, respectively.

Example 1.4 (Ferrers diagrams inside a k×` rectangle) Consider the unit squares

inside a k × ` rectangle, permuted by the symmetric group Sk`. Inside Sk` lies a

subgroup G = Sk[S`], called a wreath product, containing a subgroup S` ×S` ×
· · · × S` that permutes within rows arbitrarily, and also contains a subgroup Sk

that wholesale swaps rows. Convenient G-orbit representatives for subsets S ⊆ [k`]

are given by Ferrers diagrams inside the k × ` rectangle.

For instance, if k = 2 and ` = 3 then G = S2[S3] ⊂ S6 contains S{1,2,3} ×
S{4,5,6} but also S2 = 〈(14)(25)(36)〉. The G-orbit representatives are depicted as

darkened subsets of the rectangle 1 2 3

4 5 6
. E.g.,
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O1 =

{
, , , . . .

}
←→

O2 =

{
, , . . .

}
←→ .

The orbit poset 2[6]/G is given in Figure 1.3 (left).

(1) (2)

Rank size

b b

b b

1

b b

b b

1

b b

b b

b b

b b

2

b b

b b

b b

b b(1)

b b

b b

3

b b

b b

b b

b b

2

b b

b b

1

b b

b b

1

Figure 1.3 Orbit posets 2[6]/G, on the left: Ferrers diagrams inside a 2×3 box,G = S2[S3];
on the right: unlabeled simple graphs on 4 vertices, G = S4 ⊂ S(

[4]

2

).

Example 1.5 (unlabelled (simple) graphs on v vertices) Let
(

[v]

2

)
denote the

edges of the complete graph Kv on vertices [v] = {1, 2, . . . , v}. E.g., the complete

graph Kv for v = 5 is illustrated in Figure 1.4. Inside the symmetric group S([v]

2

)

that permutes these edges lies a subgroup G = Sv consisting of permutations of

the form σ({i, j}) = {σ(i), σ(j)} for σ ∈ Sv. Then G-orbits O of subsets S of edges

correspond to isomorphism classes of simple graphs on n vertices. For example,

when n = 4, here are two such G-orbits:

O1 =

{

4 3

1 2
,

4 3

1 2
,

4 3

1 2
}
←→

b b

b b
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K5 =

3

2

1

4

5

Figure 1.4 Complete graph on the vertices [5] = {1, 2, 3, 4, 5}.

O2 =

{

4 3

1 2
,

4 3

1 2
, . . .

}
←→

b b

b b

The orbit poset 2[6]/G is given in Figure 1.3 (right).

Given G a subgroup of Sn, if r0, r1, . . . , rn are the rank sizes of the orbit poset

2[n]
/
G, that is the number of G-orbits of k-element subsets, then we have

rk =

∣∣∣∣
(

[n]

k

)
/G

∣∣∣∣.

Here are several of their properties, generalizing the case of binomial coefficients,

that compile results of de Bruijn [2], Redfield [4], Pólya [3], and Stanley [8].

Proposition 1.6 (symmetry) For any 0 ≤ k ≤ n the rank sizes satisfy rk = rn−k.

Theorem 1.7 (de Bruijn 1959; alternating sum) The number of self-complementary

G-orbits, i.e., the orbits O such that S ∈ O if and only if [n]\S ∈ O, is given by

r0 − r1 + r2 + · · · ± rn.

Theorem 1.8 (Redfield 1927, Pólya 1937; generating function) For a variable q,

the generating function satisfies

r0 + r1q + r2q
2 + · · ·+ rnq

n =
1

|G|
∑

σ∈G

∏

cycles c
of σ

(
1 + q|c|

)
.

Theorem 1.9 (Stanley 1982; unimodality) The rank sizes increase as r0 ≤ r1 ≤
r2 ≤ · · · ≤ rbn/2c.

We will prove these results or sketch proofs using some (multi)-linear algebra.

Example 1.10 (alternating sum of rank sizes) We check the alternating sums in

Theorem 1.7 in the three examples above.

1. Necklaces for n = 6: the only self-complementary necklaces are those with labels

(1) and (2) in Figure 1.2, and in fact the alternating sum of the rank sizes gives

1− 1 + 3− 4 + 3− 1 + 1 = 2.

2. Ferrers diagrams inside a 2× 3 box: we have 1− 1 + 2− 2 + 2− 1 + 1 = 2. The

diagrams (1) and (2) are the only ones in the poset on the left of Figure 1.3 that

are self-complementary.
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3. Unlabeled simple graphs on 4 vertices: we have 1 − 1 + 2 − 3 + 2 − 1 + 1 = 1,

and the only self-complementary graph is (1) in the orbit poset on the right of

Figure 1.3.

By Theorem 1.8, the generating function in the necklace case can be computed as

follows. Let c = (1, 2, 3, 4, 5, 6) ∈ S6. Then

G = 〈c〉 = {e, c, c2, c3, c4, c5} = {e} ∪ {c, c5} ∪ {c2, c4} ∪ {c3}.

Notice that the permutations in each of the latter subsets can be written as a

product of the same number of disjoint cycles, 6, 1, 2, and 3, respectively. Thus

1

|G|
∑

σ∈G

∏

cycles c
of σ

(
1 + q|c|

)
=

1

6

(
(1 + q)6 + 2(1 + q6) + 2(1 + q3)2 + (1 + q2)3

)

= 1 + q + 3q2 + 4q3 + 3q4 + q5 + q6.

1.1.2 Idea of proofs

We linearize and

• interpret cardinalities as dimensions,

• interpret generating functions as graded dimensions or Hilbert series,

• prove equalities via isomorphisms, and

• prove inequalities via injections and surjections.

Many identities come from equality of traces of conjugate elements g, hgh−1 in a

group G acting in a representation on V : for homomorphisms ρ : G→ GL(V ), then

TraceV (ρ(hgh−1)) = TraceV (ρ(h)ρ(g)ρ(h)−1) = TraceV (ρ(g)),

where we use the identity Trace(AB) = Trace(BA), that implies

Trace(PAP−1) = Trace(P−1PA) = Trace(A).

A quick refresher on tensor products

Let GL2(C) be the set of 2 × 2 invertible matrices with complex entries, and G ={(
1 x

0 1

)
: x ∈ C

}
. In particular, the identity matrix e =

(
1 0

0 1

)
∈ G. Note that

(
1 x

0 1

)(
1 y

0 1

)
=

(
1 x+ y

0 1

)
, and if g =

(
1 x

0 1

)
then g−1 =

(
1 −x
0 1

)
. Now

GL2(C) acts on V = C2 and also on V ⊗V . The elements of V ⊗V are of the form∑
i,j cijvi ⊗ vj , with vi, vj ∈ V and cij ∈ C. If V has a basis {b, w} then a basis for



Reflection groups and enumeration 7

V ⊗ V is {b ⊗ b, b ⊗ w,w ⊗ b, w ⊗ w}. The above element g of the group GL2(C)

acts diagonally on V ⊗ V as in the following examples:

g(b⊗ w) = g(b)⊗ g(w) = b⊗ (xb+ w) = b⊗ xb+ b⊗ w = xb⊗ b+ b⊗ w
g(w ⊗ w) = g(w)⊗ g(w) = (xb+ w)⊗ (xb+ w)

= x2b⊗ b+ xb⊗ w + xw ⊗ b+ w ⊗ w.

1.1.3 Proofs of symmetry, alternating sum and generating function

For the beads, start with V = C2 having C-basis {b, w} (black and white). Then

elements T ∈ GL(V ) = GL2(C) act on V .

For example, t =

(
0 1

1 0

)
acts via t(b) = w and t(w) = b, and s =

(−1 0

0 1

)
acts

via s(b) = −b and s(w) = w.

Let Tn(V ) = V ⊗V ⊗· · ·⊗V = V ⊗n be the n-th tensor power of the vector space

V = C2 over C. The groups of invertible 2× 2 matrices GL(V ) and the symmetric

group Sn act on V ⊗n as follows:

• GL(V ) acts diagonally, i.e.,

T (v1 ⊗ · · · ⊗ vn) = T (v1)⊗ · · · ⊗ T (vn),

expanding by multilinearity, and

• Sn acts positionally, i.e.,

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

These two actions commute, namely

σT (v1 ⊗ · · · ⊗ vn) = T
(
vσ−1(1)

)
⊗ · · · ⊗ T

(
vσ−1(n)

)
= Tσ(v1 ⊗ · · · ⊗ vn).

The tensor power V ⊗n has a natural C-basis
{
eS
}
S∈2[n] indexed by subsets S ∈ 2[n].

Example 1.11 (basis elements indexed by 2[n]) In the black (b) and white (w)

necklaces example in Section 1.1.1, taking n = 4, the tensor eS has b in positions S

and w in positions [4] \ S. We will abbreviate these basis tensors by writing them

as words that omit the tensor symbols. For instance,

e{2} = w ⊗ b⊗ w ⊗ w ←→ wbww,

e{1,4} = b⊗ w ⊗ w ⊗ b ←→ bwwb.

For a permutation group G ⊂ Sn, the G-fixed subspace
(
V ⊗n

)G
has a natural

C-basis indexed by G-orbits O ∈ 2[n]/G given by

{
eO
}
O∈2[n]/G

, where eO : =
∑

S∈O
eS .
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bbbb

bbbw bbwb bwbb wbbb

bbww bwbw bwwb wbbw wbwb wwbb

bwww wbww wwbw wwwb

wwww

e = bbbb

e

e e = bbww + bwwb

+wwbb+ wbbw

e

e = wwww

Figure 1.5 Decomposition of V ⊗4 (on the left) and
(
V ⊗4

)G
(on the right) into graded

C-vector spaces, where G = 〈(1, 2, 3, 4)〉.

Example 1.12 (basis elements indexed by G-orbits) In the black and white

necklace example, taking G = 〈(1, 2, 3, 4)〉 ∼= Z/4Z, we have

e = wbwb+ bwbw,

e = wbbb+ bwbb+ bbwb+ bbbw.

Both V ⊗n and (V ⊗n)G are graded C-vector spaces. Namely, V ⊗n =
⊕n

k=0

(
V ⊗n

)
k

and
(
V ⊗n

)G
=
⊕n

k=0

(
V ⊗n

)G
k
, where (V ⊗n

)
k

is the C-span of {eS}S∈([n]
k ), and

(V ⊗n
)G
k

is the C-span of {eO}O∈([n]
k )
/
G
. See Figure 1.5 for an example.

Thus the rank sizes r0, r1, . . . , rn of the orbit poset 2[n]/G can now be reinter-

preted as dimensions: one has

rk = dimC
(
V ⊗n

)G
k

=

∣∣∣∣
(

[n]

k

)/
G

∣∣∣∣ .

Proof of Proposition 1.6. Recall that the matrix t =

(
0 1

1 0

)
∈ GL(V ) swaps b

and w, and so it permutes the C-basis {eS}S∈2[n] for V ⊗n by swapping eS
t←→ e[n]\S .

This gives a C-linear isomorphism
(
V ⊗n

)
k

t−−→
(
V ⊗n

)
n−k. But since t ∈ GL(V )

commutes with the action of Sn, and hence with the action of G ⊂ Sn, then the

map t restricts to a C-linear isomorphism
(
V ⊗n

)G
k

t−−→
(
V ⊗n

)G
n−k. Therefore rk =

dim
(
V ⊗n

)G
k

= dim
(
V ⊗n

)G
n−k = rn−k, proving the rank sizes are symmetric.

Proposition 1.13 The matrix s(q) =

(
q 0

0 1

)
∈ GL(V ) acts on

(
V ⊗n

)G
with
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trace

r0 + r1q + r2q
2 + · · ·+ rnq

n.

In particular, s = s(−1) acts on
(
V ⊗n

)G
with trace r0 − r1 + r2 − · · · ± rn.

Proof Note that s(q) scales the basis element eS of V ⊗n, in fact, s(q)(eS) = q|S|eS .

For example, if n = 5 we have

s(q)(e{1,3}) = s(q)(b⊗ w ⊗ b⊗ w ⊗ w)

= qb⊗ w ⊗ qb⊗ w ⊗ w
= q2b⊗ w ⊗ b⊗ w ⊗ w = q2e{1,3}.

Hence s(q) scales all of
(
V ⊗n

)
k

by qk, so s(q) scales
(
V ⊗n

)G
k

by qk. Thus its trace

on
(
V ⊗n

)G
=
⊕n

k=0

(
V ⊗n

)G
k

will be
∑n
k=0 q

k dimC
(
V ⊗n

)G
k

=
∑n
k=0 q

krk.

Proof of Theorem 1.7 Note that s =

(−1 0

0 1

)
and t =

(
0 1

1 0

)
are conjugate

within GL(V ), since t is diagonalizable with eigenvalues −1, 1. Hence in the rep-

resentation of GL(V ) on
(
V ⊗n

)G
they must act with the same trace, which is

r0 − r1 + r2 − · · · ± rn for s and hence also for t.

Thus it remains to show that t acts on
(
V ⊗n

)G
with trace equal to the number

of self-complementary G-orbits. We saw that t permutes the C-basis {eS}S∈2[n]

for V ⊗n by swapping eS
t←→ e[n]\S . This means that t also permutes the C-basis

{eO}O∈2[n]/G for
(
V ⊗n

)G
by fixing eO if O is self-complementary and swapping

eO
t←→ eO′ if S ∈ O but [n] \ S ∈ O′ 6= O. Hence the trace of t counts these fixed

points.

For example,

t
(
e
)

= t(bwbw + wbwb)

= wbwb+ bwbw

= e ,

t
(
e
)

= t(bwww + wbww + wwbw + wwwb)

= wbbb+ bwbb+ bbwb+ bbbw

= e .

Proof of Theorem 1.8 We use two exercises. From Exercise 1.1.2, we know that for

a representation ρ : G→ GL(U) of a finite group, the fixed space UG has dimension

dimC
(
UG
)

=
1

|G|
∑

σ∈G
Trace

(
ρ(σ)

)
.
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Thus,

r0 + r1q + r2q
2 + · · ·+ rnq

n =

n∑

k=0

dimC
(
V ⊗n

)G
k
· qk

=

n∑

k=0

(
1

|G|
∑

σ∈G
Trace(

V ⊗n
)
k

(σ)

)
· qk

=
1

|G|
∑

σ∈G

n∑

k=0

qkTrace(
V ⊗n

)
k

(σ)

=
1

|G|
∑

σ∈G

∏

cycles
C of σ

(
1 + q|C|

)
.

The last equality is proven in Exercise 1.1.3.

1.1.4 Unimodality

Proof of Theorem 1.9 We want to show for k < n/2 that rk ≤ rk+1, i.e. dimC
(
V ⊗n

)G
k
≤

dimC
(
V ⊗n

)G
k+1

. Let’s try to find an injective C-linear map

(
V ⊗n

)G
k
↪→
(
V ⊗n

)G
k+1

.

We could do this for all permutation groups G ⊆ Sn at once if we could find an

injective C-linear map
(
V ⊗n

)
k

Uk
↪−→

(
V ⊗n

)
k+1

that commutes with the Sn-action on V ⊗n. An obvious candidate is

Uk(eS) =
∑

T∈( [n]
k+1)

T⊃S

eT .

For example for n = 5,

U2

(
e{1,3}

)
= e{1,2,3} + e{1,3,4} + e{1,4,5}, i.e.,

U2(bwbww) = bbbww + bwbbw + bwbwb.

The final step is to show that Uk commutes with the Sn-action (see Exercise 1.1.4

part (a)), and is injective for k < n/2. The latter is Lemma 1.14 below, whose

assertions are justified in Exercise 1.1.4 parts (b)-(f).

We review a few facts from linear algebra. For a square matrix Q ∈ Rn×n, say

that Q is symmetric if QT = Q. If all eigenvalues (∈ R) are ≥ 0 then Q is said

to be positive semidefinite, which is equivalent to xTQx ≥ 0 for all x ∈ Rn. If

all eigenvalues are > 0 then Q is positive definite, which happens if and only if

xTQx > 0 for all x ∈ Rn \ {0}, i.e., if and only if Q is positive semidefinite and
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nonsingular. Given any (rectangular) matrix A, the matrix ATA is always positive

semidefinite, since xTATAx = (Ax)TAx = |Ax|2 ≥ 0.

Lemma 1.14 For k < n
2 , the map Uk :

(
V ⊗n

)
k
→
(
V ⊗n

)
k+1

defined C-linearly

by Uk(eS) =
∑
T∈( [n]

k+1)
eT is injective.

Proof (This proof was shown to us by S. Fomin.) It is enough to show that UTk Uk is

invertible. Note that UTk = Dk+1 where Dk+1(eT ) =
∑
S∈([n]

k ), S⊂T eS . This formula

lets one check that every k-subset S has

(Dk+1Uk − Uk−1Dk)(eS) = ((n− k)− k)eS ,

and therefore

Dk+1Uk = Uk−1Dk + (n− 2k)I(V ⊗n)k .

From this identity, noting that Uk−1Dk is positive semidefinite, and (n−2k)I(V ⊗n)k

is positive definite for k < n
2 , one concludes that Dk+1Uk is positive definite for

k < n
2 . Hence Dk+1Uk is invertible, so Uk is injective.

Exercises

Exercise 1.1.1 Give a very short summary of the most important lessons of this

lecture. Carry out small examples that illustrate the main definitions and

results.

Exercise 1.1.2 Let V be a C-vector space and π : V → V a C-linear map which

is idempotent, i.e., π2 = π.

(a) Show that one has a C-vector space decomposition V = π(V )⊕
(
1V −π

)
V ,

where π(V ) = image(π) and
(
1V − π

)
(V ) = kerπ.

(b) Assume that dimC V is finite. Deduce that dimC
(
image(π)

)
= TraceV (π).

(c) Show that for any representation ρ : G → GL(V ) of a finite group G on

a finite dimensional C-vector space V , the averaging map πG : V → V

defined by πG(v) =
1

|G|
∑
σ∈G

ρ(σ)(v), is idempotent, and its image is the

G-fixed subspace V G.

(d) Deduce that in the setting of (c), one has dimC
(
V G
)

=
1

|G|
∑
σ∈G

TraceV
(
ρ(σ)

)
.

(e) Use (d) to prove Burnside’s lemma: when a finite group G permutes a finite

set X, the number of G-orbits on X is
1

|G|
∑
σ∈G

∣∣{x ∈ X : σ(x) = x
}∣∣.

Hint: Consider a vector space V with C-basis {ex}x∈X and σ(ex) = eσ(x).

What is dimC(V G)? Can we compute TraceV (σ) for σ ∈ G?
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Exercise 1.1.3 Let V = C2 with C-basis {b, w} and V ⊗n = ⊕nk=0

(
V ⊗n

)
k
, where(

V ⊗n
)
k

has C-basis {eS}S∈([n]
k ). Let Sn act positionally via

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

(a) Prove that a permutation σ ∈ Sn has σ(eS) = eS if and only if the subset

S is a union of some of the cycles of σ.

(b) Deduce that
∑n
k=0 q

k Trace(
V ⊗n

)
k

(σ) =
∏

cycles c
ofσ

(
1 + q|c|

)
.

Exercise 1.1.4 Recall the map Uk :
(
V ⊗n

)
k
→
(
V ⊗n

)
k+1

defined by Uk(eS) =∑
T∈( [n]

k+1) : S⊂T eT .

(a) Prove that Uk commutes with the Sn-action on V ⊗n.

(b) Prove that the map Dk+1 :
(
V ⊗n

)
k+1
→
(
V ⊗n

)
k
, defined by Dk+1(eT ) =∑

S∈([n]
k ) : S⊂T eS , is actually the transpose/adjoint map Dk+1 = UTk with

respect to our usual bases on
(
V ⊗n

)
k
.

(c) Explain why (b) implies that both Dk+1Uk and Uk−1Dk are symmetric and

nonnegative definite (all eigenvalues are ≥ 0).

(d) Prove that
(
Dk+1Uk − Uk−1Dk

)
(eS) = (n − 2k)eS for any S ∈

(
[n]
k

)
, and

hence Dk+1Uk = Uk−1Dk + (n− 2k)I(V ⊗n)k .

(e) Explain why (d) implies that Dk+1Uk is positive definite for k < n/2.

(f) Explain why Uk is injective for k < n/2.

Exercise 1.1.5 For G = Sk[S`] ⊂ Sk`, recall that the G-orbits 2[k`]/G biject

with the Ferrers diagrams inside a k×` box, that is, with the number partitions

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) with 0 ≤ λj ≤ `. Let |λ| := λ1 + λ2 + · · · + λk so

that the rank-generating function for 2[k`]/G is r0 + r1q+ r2q
2 + · · ·+ rnq

n =∑
such λ q

|λ| =
[
k+`
k

]
q
, the q-binomial coefficient.

(a) Prove the q-Pascal recurrences

[
N

k

]

q

= qk
[
N − 1

k

]

q

+

[
N − 1

k − 1

]

q

and

[
N

k

]

q

=

[
N − 1

k

]

q

+ qN−k
[
N − 1

k − 1

]

q

,

where N := k + `.

(b) Prove the formula
[
N
k

]
q

=
[N ]!q

[k]!q[N − k]!q
, where [N ]!q and [m]q are defined

as in Example 1.35.

(c) Prove that when q = pd is the power of a prime, and hence the cardinality of

a finite field Fq, then
[
N
k

]
q

= #
{
k−dimensional Fq−linear subspaces of FNq

}
.
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1.2 Lecture 2: Representation theory and reflection groups

Definition 1.15 For a group G, a representation of G on a C-vector space V ∼= Cn
means a group homomorphism

G
ρ−→ GL(V ) ∼= GLn(C).

Example 1.16 (examples in combinatorics) 1. Permutation representations come

from homomorphisms G→ Sn of G into the symmetric group Sn. Such represen-

tations factor as follows:

G
i
↪−→ Sn

ρperm−−−→ GLn(C)

σ 7−−−→ n× n permutation matrix of σ,

e.g., in S5(C),

σ = (2 4 5)(1 3)
ρperm7−−−−→




1 2 3 4 5

1 0 0 1 0 0

2 0 0 0 0 1

3 1 0 0 0 0

4 0 1 0 0 0

5 0 0 0 1 0



∈ GL5(C)

For example, we saw

G = 〈(1, 2, . . . , n)〉 ↪→ Sn whose G-orbits on 2[n] were necklaces
∼= Z/nZ

G = Sk[S`] ↪→ Sk` whose G-orbits on 2[k`] were Ferrers diagrams in ...
...︸ ︷︷ ︸
`

}
k

G = Sv ↪→ S(v2)
whose G-orbits on 2([v]

2 )were the unlabeled graphs.

Or the regular representation ρreg:

G ↪→ S|G| in which ρreg(g)(h) := gh.

2. 1-dimensional representations, G → GL1(C) = C∗ such as the trivial representa-

tion

1 = 1G : G→ C∗

g 7→ 1,

or the determinant representation

det : GL(V )
det−−→ C∗

g 7−−→ det(g).
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3. Symmetry groups of geometric objects P ⊂ Rn, where

G = Aut(P ) := {g ∈ GLn(R) : g(P ) = P}

If P is the polygon in Figure 1.6, then G = Aut(P ) = 〈c〉 ∼= Z/4Z. The generator

c of G is an element of the orthogonal group O2(R) ⊂ GL2(R) (⊂ GL2(C)).

P

0

c
m = 5

t
s

r = st

Figure 1.6 On the left, P ⊂ R2 is the polygon in Example 1.16.3.. The group of trans-
formations which fix P is generated by a rotation c of R2 about the origin. On the right,
we have a regular pentagon (5-sided polygon), and t, s denote two elements in the group

of symmetries of G = I2(5)
ρref
↪−−→ O2(R), namely two Euclidean reflections with respect to

the indicated lines in the figure. The composition of these two reflections gives a rotation
r = st ∈ I2(5) about the center of the polygon.

4. The (real) reflection groups are subgroups G ⊂ On(R) (⊂ GLn(R) ⊂ GLn(C))

generated by Euclidean reflections t with a hyperplane H as a set of fixed points;

this hyperplane is called the reflecting hyperplane. Good examples of reflection

groups are G = Aut(P ) for regular polytopes P . In this case, G is transitive on

maximal flags of faces, e.g., G = I2(m) = symmetries of a regular m-sided polygon,

and G = Sn symmetries of a regular (n−1)-dimensional simplex. As examples, see

Figure 1.6 (right), Figure 1.7, and Example 1.41 far below.

Definition 1.17 Call two representations G
ρ−→ GL(V ) and G

ρ′−→ GL(V ′) equiv-

alent if one has a C-linear isomorphism V
ϕ−→ V ′ with ϕ−1 ◦ ρ′(g) ◦ ϕ = ρ(g) for all

g ∈ G.

Question: Can we classify, in any sense, all G-representations up to equivalence?

Answer: Yes, when G is finite (and we are working over C).

In fact, the indispensable tool here are the traces that we have already been

using.

Definition 1.18 Given a representation G
ρ−→ GL(V ) = GLn(C) its character χρ
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24

3

1
n = 4

H

t = (1, 2)

2

1

3

n = 3

t = (2, 3)

s = (1, 2)

r = st = (1, 2, 3)

Figure 1.7 Regular 3-dimensional (left) and 2-dimensional (right) simplices. The reflection
t, on the left, and the reflections s, t and the rotation st on the right, are elements of the

group of symmetries G = Sn

ρref
↪−−→ On−1(R) for n = 4 and n = 3, respectively.

is the (conjugacy) class function

G
χρ−−→ C

g 7−−→ χρ(g) := Trace
(
ρ(g)

)
.

Recall that as a class function χρ(hgh
−1) = χρ(g) for all h, g ∈ G.

1.2.1 Facts from finite group representation theory over C

Theorem 1.19 (Maschke) One can always decompose ρ ∼=
t⊕
i=1

ρi, meaning

ρ(g) =




V1 V2 ··· Vt

V1 ρ1(g) 0 0 0

V2 0 ρ2(g) 0 0
... 0 0

. . . 0

Vt 0 0 0 ρt(g)




for all g ∈ G, where V =
t⊕
i=1

Vi and each representation G
ρi−→ GL(Vi) is sim-

ple/ irreducible, i.e., that Vi has no G-stable subspaces, except {0} and V itself.

Theorem 1.20 The list of (inequivalent) irreducible representations{
ρ1, ρ2, . . . , ρr

}
has size r = #G−conjugacy classes.

In fact, the character χρ determines ρ up to equivalence, as irreducible characters{
χρ1 , . . . , χρr

}
give a C-basis for the space of class functions f : G→ C.

Furthermore, this basis is orthonormal with respect to this positive definite Her-
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mitian inner product on class functions:

〈χ1, χ2〉G :=
1

|G|
∑

g∈G
χ1(g)χ2(g).

Hence to decompose ρ =
⊕r

i=1 ρ
⊕mi
i into irreducibles ρ1, . . . , ρr one can compute

the multiplicities mi from χρ =
r∑
i=1

miχρi , i.e., 〈χρ, χρi〉 = mi.

Also, 〈χρ, χρ〉G =
r∑
i=1

m2
i , so χρ is irreducible if and only if 〈χρ, χρi〉G = 1.

Example 1.21 (standard examples) 1. 1-dimensional representations G
ρ−→ C∗

are the same as their own character χρ = ρ. Hence they are always class functions.

2. For permutation representations ρ = ρperm ◦ i : G → GLn(C), the character

χρ(σ) = Trace(σ) = # of fixed points (1-cycles) of σ as a permutation, and

〈χρ, χ1〉G =
1

|G|
∑

σ∈G
χρ(g) =

1

|G|
∑

σ∈G
#fixed points of σ

= # of G-orbits on {1, 2, . . . , n},

where the latter follows by Burnside’s lemma.

3. The regular representation G
ρreg
↪−−→ S|G| → GL|G|(C) having ρreg(g)(h) = gh has

χreg(g) = Trace
(
ρreg(g)

)
=

{
|G| if g = e

0 else.

Hence

〈
χreg, χρi

〉
G

=
1

|G|
∑

g∈G
χreg(g)χρi(g) =

1

|G|χreg(e)χρi(e)

=
1

|G| |G|dimC(Vi) = dimC(Vi).

Corollary 1.22 The regular representation ρreg of G contains every irreducible

ρi with multiplicity dimC(Vi), i.e., ρreg =
r⊕
i=1

ρ
⊕ dimC(Vi)
i .

Taking dimensions gives |G| = ∑r
i=1 dimC(Vi)

2.

Example 1.23 Let G = S3 = {e, (1 2), (1 3), (1 2 3), (1 3 2)}. The permutation
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representation ρperm : G→ GL3(C) is given by

e 7→




1 0 0

0 1 0

0 0 1


 (2 3) 7→




1 0 0

0 0 1

0 1 0


 (1 2) 7→




0 1 0

1 0 0

0 0 1




(1 2 3) 7→




0 0 1

1 0 0

0 1 0


 (1 3) 7→




0 0 1

0 1 0

1 0 0


 (1 3 2) 7→




0 1 0

0 0 1

1 0 0


 .

There are r = 3 conjugacy classes. Namely {e}, {(1 2), (1 3), (2 3)} and {(1 2 3), (1 3 2)}.
Who are the three irreducible representations?

Since G = 〈s, t〉, with s = (1 2), and t = (2 3), then its 1-dimensional representa-

tions χ are determined by the values χ(s), χ(t) in C∗ = GL1(C). But s2 = t2 = e, so

these values χ(s), χ(t) lie in {±1}. Also, since s, t are conjugate in S3, these values

are equal, either both +1 or both −1. This gives two 1-dimensional characters

1 : S3 → C∗ sgn: S3 → C∗

s, t 7→ 1 s, t 7→ −1.

Let ρ be the other irreducible character. Then |G| =
∑3
i=1 dimC(Vi)

2, i.e., 3! =

12 + 12 + (dim ρ)2. Hence dim ρ = 2.

We claim that the reflection representation ρref : S3 → O2(R) is irreducible. In

fact, by computing its character

χref(e) = Trace

(
1 0

0 1

)
= 2

χref((i j)) = Trace

(
1 0

0 −1

)
= 0

χref((i j k)) = Trace

(
ξ 0

0 ξ−1

)
= ξ + ξ−1 = −1,

where ξ = e2πi/3, and

〈χref , χref〉G =
1

3!

∑

σ∈S3

χref(σ)χref(σ) =
1

6

(
2 · 2 + 3 · 0 · 0 + 2 · (−1)(−1)

)
= 1.

The irreducible character table for S3 is given in Table 1.1. We can also see now that

the permutation representation ρperm must be reducible. In fact from its character

values (see Table 1.2), one sees that χperm = χ1 +χref , and hence ρperm = 1⊕ ρref .

One can also see that ρperm is reducible directly from the geometry in R3 (⊂ C3),

as follows. The space R3 is the orthogonal direct sum of the line x1 = x2 = x3

carrying the trivial representation 1, and its perpendicular plane x1 + x2 + x3 =
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e (1 2); (1 3); (2 3) (1 2 3); (1 3 2)

1 1 1 1

sgn 1 −1 1

ρref 2 0 −1

Table 1.1 Character table for S3.

e (1 2); (1 3); (2 3) (1 2 3); (1 3 2)

χperm 3 1 0

Table 1.2 Character values for the representation ρperm : S3 → GL3(C).

0 carrying ρref . In fact, the three standard basis vectors e1, e2, e3 of R3 project

perpendicularly to this plane, giving the three vertices 1, 2, 3 of the triangle on the

right in Figure 1.7.

This example is generalized in Exercise 1.2.4.

Exercises

Exercise 1.2.1 Give a very short summary of the most important lessons of this

lecture. Carry out small examples that illustrate the main definitions and

results.

Exercise 1.2.2 Let G = I2(m) the group of linear symmetries of a regular m-

sided polygon, with r in G any rotation through angle 2π
m , and s in G any

reflection symmetry.

(a) Prove that G = {e, r, r2, . . . , rm−1} t {s, sr, sr2, . . . , srm−1}, the first set

corresponding to the rotations and the second to the reflections.

(b) Prove the presentation for G as G ∼= 〈s, r | s2 = rm = e, srs = r−1〉.
(c) Prove the (Coxeter) presentation of G as G ∼= 〈s, r | s2 = t2 = e = (st)m〉.

Exercise 1.2.3

(a) Prove that every 1-dimensional irreducible representation for G = I2(m)

sends s, t to values {±1}, and they exactly are {1,det} if m is odd, and

{1,det, ρs, ρt} if m is even, where 1 sends s and t to 1, det(s) = det(t) = −1,

ρs(s) = ρt(t) = −1, and ρs(t) = ρt(s) = 1.

(b) Prove that there is a representation ρ(j) : G = I2(m) → GL2(C) for each
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j ∈ Z uniquely defined by ρ(j)(s) =

(
0 1

1 0

)
and ρ(j)(r) =

(
ζj 0

0 ζ−j

)
,

where ζ := e2πi/m.

(c) Prove the following isomorphisms of G-representations:

ρ(j) ∼= ρ(j+m) ∼= ρ(m−j),

ρ(0) ∼= 1⊕ 1,
ρ(m/2) ∼= ρs ⊕ ρt for m even,

ρ(1) ∼= ρref .

(d) Prove that G = I2(m) has as its list of inequivalent irreducible representa-

tions the union of {ρ(j)}j=1,2,...,b(m−1)/2c together with either {1,det} if m

is odd, or {1,det, ρs, ρt} if m is even.

Exercise 1.2.4 Let G ⊂ Sn be a permutation group, and ρ : G → GLn(C) the

associated permutation representation for G acting on [n].

(a) Show that the permutation representation where G permutes the ordered

pairs (i, j) ∈ [n]× [n] via g(i, j) =
(
g(i), g(j)

)
has character χ2

ρ.

(b) If ρ is a doubly-transitive permutation representation of G, meaning that

it has G acting transitively on the set of pairs {(i, j) : 1 ≤ i 6= j ≤ n}, then

show 〈χρ, χρ〉G = 2.

(c) If ρ is doubly-transitive, show ρ = 1⊕ ρ′ with ρ′ irreducible.

Hint: Show ρ = 1⊕ ρ′ for some representation ρ′, and calculate 〈χρ′ , χρ′〉G.

(d) Prove ρperm : G = Sn → GLn(C) decomposes as ρperm = 1 ⊕ ρref , where

ρref represents Sn as the linear symmetries of a regular (n− 1)-simplex.

(e) Prove G = Sn has ρref irreducible.

Exercise 1.2.5 Prove that G = S4 has the following list of (inequivalent) irre-

ducibles,

{1, sgn, ρref , sgn⊗ ρref , ρ2},

where sgn ⊗ ρref sends σ to sgn(σ) times the permutation matrix of σ, and

ρ2 is the composite S4 → S4/V4
∼= S3

ρref−−→ O2(R). The group V4 is the

Klein-four subgroup
{
e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

}
.

Compute the irreducible character table for S4 by giving their characters

values on
{
e, (ij), (ijk), (ij)(k`), (ijk`)

}
.

1.3 Lecture 3: Molien’s theorem and coinvariant algebras

Let us examine the behaviour of characters of group representations under various

(multi-) linear constructions.
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1.3.1 Direct sum

Given representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2), we have seen that

ρ1 ⊕ ρ2 : G→ GL(V1 ⊕ V2) is given by

(ρ1 ⊕ ρ2)(g)(v1, v2) = (ρ1(g)(v1), ρ2(g)(v2)),

which can be written as

(ρ1 ⊕ ρ2)(g) =

(
ρ1(g) 0

0 ρ2(g)

)
.

Then one has the character equality χρ1⊕ρ2 = χρ1 + χρ2 .

1.3.2 Tensor product

Similarly, one can create ρ1 ⊗ ρ2 : G→ GL(V1 ⊗ V2) via

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2).

Thus (ρ1 ⊗ ρ2)(g) is the tensor/Kronecker product of the matrices ρ1(g)⊗ ρ2(g).

Recall for matrices A = (aij) and B, the tensor product matrix A⊗B = (aijB).

If A : V1 → V1 and B : V2 → V2 where V1 has a basis {vi} and V2 has a basis {wj},
then A⊗B : V1 ⊗ V2 → V1 ⊗ V2 acts by

A⊗B(vi ⊗ wj) = Avi ⊗Bwj = · · ·+ aiibjjvi ⊗ wj + · · ·

Therefore

Trace(A⊗B) =
∑

i

∑

j

aiibjj =

(∑

i

aii

)(∑

j

bjj

)
= Trace(A)Trace(B).

Hence χρ1⊗ρ2(g) = χρ1(g)χρ2(g), i.e., χρ1⊗ρ2 = χρ1χρ2 as class functions on G.

1.3.3 d-th Tensor power

As in Section 1.1.2 above, we can create the d-th tensor power

T d(V ) := V ⊗d = V ⊗ · · · ⊗ V (d factors).

Given aG-representation ρ : G→ GL(V ) we can define the diagonal action T d(ρ) : G→
GL
(
T d(V )

)
= GL

(
V ⊗d

)
via

T d(ρ)(g)(v1 ⊗ · · · ⊗ vd) = ρ(g)(v1)⊗ · · · ⊗ ρ(g)(vd).

Thus χTd(ρ)(g) = χρ(g)d.



Reflection groups and enumeration 21

1.3.4 Tensor Algebra

Putting the d-th tensor powers together we get the tensor algebra

T (V ) := ⊕d≥0T
d(V ) =

⊕

d≥0

V ⊗d,

with a G-representation T (ρ) : G→ GL(T (V )) which now has a graded character

χT (ρ)(g; q) :=
∑

d≥0

qd · χTd(ρ)(g) =
∑

d≥0

qd · χρ(g)d =
1

1− qχρ(g)
.

1.3.5 Symmetric powers and symmetric algebra

The d-th symmetric power of V is defined by

Symd(V ) := V ⊗d/spanC{v1⊗· · ·⊗vi⊗vi+1⊗· · ·⊗vd−v1⊗· · ·⊗vi+1⊗vi⊗· · ·⊗vd}.
Denote by v1 · v2 · · · vd the image of v1⊗ v2⊗ · · · ⊗ vd in the quotient. Note that we

have commutativity: v1 · v2 · . . . · vd = vw(1) · vw(2) · . . . · vw(d) for any w ∈ Sd.

Because of the G-action T d(ρ) : G → GL
(
V ⊗d

)
commutes with the Sd action

on the positions v1 ⊗ · · · ⊗ vd, the subspace modded out above is G-stable, and the

G-action makes sense on the quotient. That is, one obtains a G-representation

Symd(ρ) : G→ GL
(
SymdV

)
,

via Symd(ρ)(g)(v1 · v2 · . . . · vd) = ρ(g)(v1) · ρ(g)(v2) · . . . · ρ(g)(vd). Putting them

together, on the symmetric algebra Sym(V ) :=
⊕

d≥0 Symd(V ) one also obtains a

G-representation Sym(ρ) : G→ GL
(
Sym(V )

)
.

Can we compute its graded character χSym(ρ)(g; q) :=
∑
d≥0 q

d · χSymd(ρ)(g) ?

Proposition 1.24 For any group representation ρ : G → GL(V ) and g ∈ G we

have

χSym(ρ)(g; q) :=
∑

d≥0

qd · χSymd(ρ)(g) =
1

det
(
1V − q · ρ(g)

) .

We will prove Proposition 1.24 in Exercise 1.3.2, along with the famous corollary:

Theorem 1.25 (Molien 1897) Given a finite group representation ρ : G→ GL(V )

(with V = Cn), for any other representation Ψ of G one has

∑

d≥0

〈
χSymd(ρ), χΨ

〉
G
· qd =

1

|G|
∑

g∈G

χΨ(g)

det
(
1V − q · ρ(g)

) .

In particular, taking Ψ = 1G, one obtains the Hilbert series for the G-fixed subal-

gebra Sym(V )G, namely

Hilb
(
Sym(V )G, q

)
:=
∑

d≥0

qd · dimC Symd(V )G =
1

|G|
∑

g∈G

1

det(1V − q · ρ(g))
.
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Note that if V = Cn has a C-basis x1, . . . , xn then Sym(V ) ∼= C[x1, . . . , xn] =:

C[x], the polynomial ring in n variables, and Sym(V )G ∼= C[x]G is the G-invariant

subalgebra when ρ(G) ⊂ GLn(C) acts via linear substitution of variables.

Example 1.26 Let G = S3 and ρperm : G → GL3(C) = GL(V ), where V = C3

has basis x1, x2, x3. Then Sym(V ) ∼= C[x1, x2, x3] with G = S3 permuting variables.

Hence Sym(V )G ∼= C[x1, x2, x3]S3 consists of the symmetric polynomials.

By the fundamental theorem of symmetric functions we have C[x1, . . . , xn]Sn =

C[e1, . . . , en], where ed is the d-th elementary symmetric function given by

∑

1≤i1<...<id≤n
xi1xi2 . . . xid .

Thus, Sym(V )G ∼= C[e1, e2, e3], where e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3

and e3 = x1x2x3. Therefore, we expect

Hilb
(
Sym(V )G, q) = (1 + q + q2 + · · ·

)(
1 + q2 + q4 + · · ·

)(
1 + q3 + q6 + · · ·

)

=
1

(1− q1)(1− q2)(1− q3)
.

What does Molien’s Theorem tell us? Recall the S3 character table given in Ta-

ble 1.1. Molien’s Theorem tell us that Sym(V ) = C[x1, x2, x3] has

∑

d≥0

〈
χSymd(ρ), χψ

〉
S3
· qd =





1

3!

[
1

(1− q)3
+

3(1)

(1− q2)(1− q) +
2(1)

1− q3

]
if ψ = 1,

1

3!

[
1

(1− q)3
+

3(−1)

(1− q2)(1− q) +
2(1)

1− q3

]
if ψ = sgn;

1

3!

[
2

(1− q)3
+

3(0)

(1− q2)(1− q) +
2(−1)

1− q3

]
if ψ = ρref ,

=





1

(1− q)(1− q2)(1− q3)
if ψ = 1;

q3

(1− q)(1− q2)(1− q3)
if ψ = sgn;

q1 + q2

(1− q)(1− q2)(1− q3)
if ψ = ρref .

Here we used that for any permutation σ ∈ Sn we have (see Exercise 1.3.3):

det
(
1V − qρperm(σ)

)
=

∏

cycles c
ofσ

(
1− q|c|

)
.

Notice also that the value obtained here in the case ψ = 1 is what we expected

since it is Hilb(C[x1, x2, x3]S3 , q) = Hilb(C[e1, e2, e3], q). The numerators fψ(q) that
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appeared in these expressions

∑

d≥0

〈
χSymd(ρ), χΨ

〉
S3
· qd =

fψ(q)

(1− q)(1− q2)(1− q3)

are called the fake-degree polynomials for ψ. They come from viewing S3 as a

reflection group acting on V = C3; see Corollary 1.30 below.

Lemma 1.27 Given any square matrix A = (aij) of variables, viewed as a C(aij)-

linear map one has the following identity in the power series ring C[[aij ]]:

∑

d≥0

TraceSymd(V )Symd(A) =
1

det(1V −A)
.

Remark 1.28 Proposition 1.24 can be deduced from Lemma 1.27 (see Exercise

1.3.2), which in turn is equivalent to MacMahon’s Master Theorem (1916). The

latter is described and proven in Exercise 1.3.4 and used in Exercise 1.3.5 (d) to

prove an interesting identity.

The next result of Shephard and Todd [6] and Chevalley [1] explains the impor-

tant role played by reflection groups in this story.

Theorem 1.29 (Shephard-Todd 1955/Chevalley 1955) Given any finite reflection

group G ⊂ GLn(R) acting on Sym(V ) ∼= C[x1, . . . , xn] := C[x] by linear substitu-

tions, where x1, . . . , xn form a basis for V , then

(a) the G-invariant subalgebra is again a polynomial algebra given by: C[x]G =

C[f1, . . . , fn] for homogeneous polynomials f1, . . . , fn of degrees d1, . . . , dn, and

we have

Hilb
(
C[x]G, q

)
=

1

(1− qd1)(1− qd2) · · · (1− qdn)
.

(b) As G-representations, the coinvariant algebra C[x]/(f) where (f) = (f1, . . . , fn)

is isomorphic to the regular representation:

C[x]/(f1, . . . , fn) ∼= ρreg.

Note that, for a reflection group G, Theorem 1.29 says the coinvariant algebra

C[x]/(f) gives us naturally a graded version of the regular representation (!).

Using commutative algebra, namely that C[x1, . . . , xn] is a Cohen-Macaulay ring

and f1, . . . , fn is a system of parameters and hence a regular sequence, one can

deduce the following corollary.

Corollary 1.30 For a reflection group G, as in Theorem 1.29, one has an iso-

morphism of graded G-representations

C[x] ∼= C[x]G ⊗ C[x]/(f), (1.1)
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and hence for any representation ψ

∑

d≥0

〈
χC[x]d , χψ

〉
G
· qd = Hilb

(
C[x]G, q

)
·
∑

d≥0

〈
χ(

C[x]/(f)
)
d

, χψ
〉
G
· qd

=
1

(1− qd1) · · · (1− qdn)
· fψ(q). (1.2)

In the formula (1.1),

• C[x]G = C[f1, . . . , fn] carrying only trivial G-representations 1 in all degrees,

• the tensor product is graded, i.e., (A⊗B)d = ⊕i+j=dAi ⊗Bj , and

• C[x]/(f) is the coinvariant algebra, a graded version of the regular representation.

The polynomial fψ(q) in (1.2) is (by definition) the fake-degree polynomial for ψ.

Example 1.31 (coinvariant algebra for S3) What does the coinvariant algebra

for G = S3 ⊂ GL3(C) look like?

We have seen that Sym(V ) = C[x1, x2, x3] and Sym(V )G = C[x1, x2, x3]S3 =

C[e1, e2, e3]. Then the coinvariant algebra is

C[x]/(f) = C[x1, x2, x3]/(e1, e2, e3)

∼= C[x1, x2]/
(
x2

1 + x1x2 + x2
2, x

2
1x2 + x1x

2
2

)
.

This quotient has the C-basis given in Table 1.3 in various degrees. Note G = S3

has

ρref = 1⊕ ρref ⊕ ρref ⊕ sgn.

Table 1.3 agrees with our calculation that

f1(q) = 1 = q0,

fρref (q) = q1 + q2,

fρsgn(q) = q3.

degree 0 1 2 3

C− basis 1 x1, x2 x21, x1x2 x21x2

S3-irreducible

decomposition
1 ρref ρref sgn

Table 1.3 C-basis and irreducible decomposition of the coinvariant algebra for S3.
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Exercises

Exercise 1.3.1 Give a very short summary of the most important lessons of this

lecture. Carry out small examples that illustrate the main definitions and

results.

Exercise 1.3.2 Prove Lemma 1.27. Start by extending the field C(aij) of ratio-

nal functions to any algebraically closed field K ⊃ C(aij), and extend V to

Kn. Then one can triangularize A, i.e., one can choose an ordered K-basis

(x1, x2, . . . , xn) for Kn so that the linear map A : Kn → Kn is given by an

upper triangular matrix with diagonal entries λ1, λ2, . . . , λn.

(a) Show that the K-basis {xj11 xj22 . . . xjnn : j1 + j2 + · · · + jn = d} for SymdV

can be ordered in such a way that SymdA acts triangularly.

(b) Explain way (a) implies that the action of SymdA on SymdV has trace∑
j1+j2+···+jn=d λ

j1
1 λ

j2
2 · · ·λjnn .

(c) Prove Lemma 1.27.

(d) Deduce Proposition 1.24.

(e) Deduce Molien’s Theorem from Proposition 1.24.

Exercise 1.3.3

(a) Prove that the permutation representation ρperm : Sn ↪→ GLn(C) = GL(V )

has the property that for any σ ∈ Sn,

det
(
1V − q · ρperm(σ)

)
=

∏

cycles c
of σ

(
1− q|c|

)
.

(b) Prove that for any irreducible character χλ of Sn, one has

∑

d≥0

〈χC[x1,...,xn]d , χλ〉Sn · qd =
1

n!

∑

σ∈Sn
χλ(σ)Pσ(1, q, q2, . . . ),

where

Pσ(x1, x2, . . . ) :=
∏

cycles c
of σ

P|C|(x1, x2, . . . ),

and Pd(x1, x2, . . . ) = xd1+xd2+· · · is the d-th power sum symmetric function.

Remark 1.32 For those familiar with Sn-representations and the relation

to symmetric functions, along with principal specializations of Schur func-

tions sλ(x1, x2, . . . ) as in [9, §7.18, 7.21], the right side in (b) equals

sλ(1, q, q2, . . . ) =
1

(1− q)(1− q2) . . . (1− qn)
fλ(q),

with

fλ(q) = qb(λ) [n]!q∏
x[h(x)]q

=
∑

Q

qmaj(Q), (1.3)
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where the product is taken over the cells x of the Ferrers diagram of λ, and

the sum over the standard Young tableaux Q of shape λ.

See [9, Corollaries 7.21.3, 7.21.5] for the undefined terms here!

Thus we have two interesting expressions for the fake degree polynomials

fψ(q) given by (1.3) in the case G = Sn.

Exercise 1.3.4 Given a matrix A = (aij)i,j=1,...,n ∈ Cn×n and nonnegative in-

tegers k = (k1, . . . , kn) ∈ Nn, define perk(A) as follows: letting

(
x1

...
xn

)
and

( y1

...
yn

)
be two sets of variables related by

( y1

...
yn

)
= A

(
x1

...
xn

)
, then perk(A) is

defined as the coefficient of xk11 · · ·xknn in yk11 . . . yknn .

(a) Check that for a 2× 2 matrix A =

(
a b

c d

)
, one has per(1,1)(A) = ad+ bc.

(b) Prove in general that per(1,1,...,1)(A) =
∑
σ∈Sn a1,σ(1)a2,σ(2) · · · an,σ(n), the

permanent of A.

(c) Deduce from Lemma 1.27 MacMahon’s Master Theorem (1916):

∑

k∈Nn
perk(A)tk11 t

k2
2 · · · tknn =

1

det(In − TA)
,

where T is the diagonal matrix (t1, . . . , tn).

Exercise 1.3.5

(a) Fix d ∈ {1, 2, 3, . . . }. Show that
∑n
k=0(−1)k

(
n
k

)d
= 0 if n is odd.

(b) When d = 1, show one still has
∑n
k=0(−1)k

(
n
k

)1
= 0 if n is even and n ≥ 2.

(c) When d = 2, show that

n∑

k=0

(−1)k
(
n

k

)2

= (−1)m
(

2m

m

)
if n = 2m.

Hint: Interpret the left side as
∑

(A,B) : A,B⊂[n]
|A|+|B|=n

(−1)|A|

and cancel it down to the terms where A = B.

(d) When d = 3, Dixon’s identity says that

n∑

k=0

(−1)k
(
n

k

)3

= (−1)m
(

3m

m,m,m

)
if n = 2m.

Deduce this from MacMahon’s Master Theorem with A =
(

0 1 −1
−1 0 1
1 −1 0

)
.

Show that the left side is per(n,n,n)(A), i.e., the coefficient of xn1x
n
2x

n
3 in
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(x2 − x3)2n(x3 − x1)2n(x1 − x2)2n, while the right side is the coefficient of

tn1 t
n
2 t
n
3 in 1/det(I3 − TA) = 1/(1 + t1t2 + t2t3 + t1t3).

1.4 Lecture 4: Cyclic sieving phenomena and Springer’s
theorem

The coinvariant algebra is helpful in combinatorics, since it can give us a grading

and a Hilbert series q-count where we had none before. These q-counts often count

more things via their evaluations at other values of q, not just q = 1.

As motivation, recall this result from our first section.

Theorem 1.33 (de Bruijn 1959) For a permutation group G ⊆ Sn consider its

orbits O = {S1, . . . , Sk} when G acts on the Boolean algebra 2[n] and the Z/2Z-

action via complementation sending c : O 7→ c(O) =
{

[n]\S1, . . . , [n]\St
}

. Then

the poset of all G-orbits X := 2[n]/G and its rank-generating function X(q) =

r0 + r1q + r2q
2 + · · ·+ rnq

n =
∑n
k=0 q

k ·
∣∣([n]

k

)
/G
∣∣ have the property that

r0 − r1 + r2 + · · · ± rn = # self-complementary G-orbits,

i.e.,
[
X(q)

]
q=−1

=
∣∣{x ∈ X : c(x) = x

}∣∣.

This is an example of what Stembridge (1994) called a “q = −1 phenomenon”

in [10]: A set X with an action of Z/2Z = 〈c〉 and a polynomial X(q) such that

X(1) = |X| and X(−1) =
∣∣{x ∈ X : c(x) = x

}∣∣. More generally, one can consider

sets X with actions of cyclic groups Z/mZ = C = 〈c〉 = {e, c, c2, . . . , cm−1} for m

larger than 2. The following generalization was introduced in [5].

Definition 1.34 (Reiner-Stanton-White 2004) Say that a set X with action of

a cyclic group C = 〈c〉 ∼= Z/mZ and a polynomial X(q) exhibit a cyclic sieving

phenomenon (CSP) if for every cd in C one has
[
X(q)

]
q=ζd

=
∣∣{x ∈ X : cd(x) = x

}∣∣,

where ζ := e2πi/m.

Example 1.35 Let X =
(

[n]

k

)
the k-element subsets of [n] with the cyclic group

C = Z/nZ = 〈c〉 acting on it. Let X(q) =
[
n
k

]
q

=
[n]!q

[k]!q[n− k]!q
the q-binomial

coefficient, where [n]! = [n]q[n − 1]q · · · [1]q and [m]q = (qm − 1)/(q − 1). Recall

from Exercise 1.1.5 that the q-binomial coefficient is the rank generating function

for 2[k`]/G where G = Sk[S`] and n = k + `.

Theorem 1.36 (Reiner-Stanton-White 2004) The set X =
(

[n]

k

)
and the polyno-

mial X(q) =
[
n
k

]
q

exhibit a CSP.
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See Exercise 1.4.3 for one of the proofs.

Example 1.37 For n = 4 and k = 2 we have X =
(

[4]

2

)
and C = Z/4Z = 〈c〉

where c = (1, 2, 3, 4). When c acts on X we obtain the following orbits {1, 2} c→
{2, 3} c→ {3, 4} c→ {1, 4} and {1, 3} c→ {2, 4}. Now

X(q) =

[
4

2

]

q

=
[4]!q

[2]!q[2]!q
=

[4]q[3]q
[2]q[1]q

=
(1 + q + q2 + q3)(1 + q + q2)

1 + q

= (1 + q2)(1 + q + q2) = 1 + q + 2q2 + q3 + q4.

Since m = 4 then ζ = e2πi/4 = i.

• Taking q = ζ0 gives 1 + 1 + 2 + 1 + 1 = 6 = |X| = |Xe|.
• Taking q = ζ2 = −1 gives 1− 1 + 2− 1 + 1 = 2 =

∣∣{{1, 3}, {2, 4}
}∣∣ = |Xc2 |.

• Finally, q = ζ = i or q = ζ3 = −i gives 1 + i− 2− i+ 1 = 0 =
∣∣Xc1

∣∣ =
∣∣Xc3

∣∣.

The previous example comes from a much more general statement about re-

flection groups due to Springer [7], and an enhanced version of the Shephard-

Todd/Chevalley isomorphism between the coinvariant algebra and the regular rep-

resentation.

Theorem 1.38 (Springer 1972) Given a finite reflection group G ⊂ GLn(C) =

GL(V ), say that c ∈ G is a regular element if it has an eigenvector v ∈ V (so

c(v) = ζ · v) lying on no reflecting hyperplane. Then if we consider the cyclic

subgroup C = 〈c〉 = {e, c, c2, . . . , cm−1} ⊂ G, one has an isomorphism of G × C-

representations

C[x1, . . . , xn]/(f1, . . . , fn) ∼= ρreg.

On the coinvariant algebra, the group G acts by linear substitutions and C acts by

scalar substitution c(xi) = ζxi for all i. On the regular representation, G acts by

left translation g : h 7→ gh, and C acts by right translation cd : h 7→ hcd.

Remark 1.39 Equivalently (see Exercise 1.4.4), for any G-representation ρ one has

χρ(c) = [fρ(q)]q=ζ ,

where fρ(q) is the fake degree polynomial for ρ.

Example 1.40 (regular elements in the symmetric group) One can consider G =

Sn as a reflection group acting on V = Cn, generated by the transpositions (i, j);

note that (i, j) acts as a reflection on V with reflecting hyperplane xi = xj . Then

inside G = Sn, an n-cycle (1, 2, . . . , n) is regular (in Springer’s sense) because

when c acts on V = Cn, it has an eigenvector

v =
(
1 ζ ζ2 · · · ζn−2 ζn−1

)T

c(v) =
(
ζ ζ2 ζ3 · · · ζn−1 1

)T
= ζv,
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where ζ = e2πi/n. This eigenvector v lies on no reflecting hyperplane xi = xj since

its coordinates are distinct. Similarly, an (n − 1)-cycle (1, 2, . . . , n − 1)(n) ∈ Sn is

also a regular element in Springer’s sense, since it has an eigenvector

v =
(
1 ω ω2 · · · ωn−3 ωn−2 0

)T

c(v) =
(
ω ω2 ω3 · · · ωn−2 1 0

)T
= ωv

where ω = e2πi/(n−1). Exercise 1.4.5 asks you to check that powers of n-cycles and

(n− 1)-cycles are the only regular elements in Springer’s sense in Sn.

Example 1.41 (regular polytopes and Coxeter elements) One can show that

the group W of symmetries of any regular polytope is generated by reflections.

Furthermore the reflecting hyperplanes turn out to dissect the boundary faces of

the polytope into its barycentric subdivision, giving a simplicial complex called the

Coxeter complex. The group W has a Coxeter presentation

W = 〈s, t, u : s2 = t2 = u2 = e, (st)mst = e, (su)msu = e, (tu)mtu = e〉

in which S = {s, t, u} are the reflections through the hyperplanes spanned by the

walls of any particular choice of a fundamental chamber C0 (shaded below). Any

element c = stu which is the product of these Coxeter generators in S in any

order is called a Coxeter element. It turns out that all such Coxeter elements c are

conjugate within W , and all are regular elements in Springer’s sense.

s

t

u

Example 1.42 (longest elements in real reflection groups) Every finite real re-

flection group W inside GL(V ) = GLn(R) contains an element called the longest

element w0, with various properties that characterize it uniquely, e.g., it is the

unique element carrying the fundamental chamber C0 to its antipodal chamber

−C0. This w0 is always a regular element in Springer’s sense.

For example, in Sn the longest element w0 is the reversing permutation (1, n)(2, n−
1)(3, n− 2) · · · . One can check this w0 is a power of an n-cycle when n is even, and

a power of an (n− 1)-cycle when n is odd, consistent with Exercise 1.4.5.

Springer’s Theorem 1.38 leads to the following general CSP.
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Theorem 1.43 (Reiner-Stanton-White 2004) When a finite reflection group G ⊂
GLn(C) acts transitively (with only one orbit) on a set X (∼= G/H for some group

H) and c ∈ G is any regular element, say of order m, then one has a CSP for the

action C = 〈c〉 ∼= Z/mZ on X, with the polynomial

X(q) :=
Hilb

(
C[x1, . . . , xn]H , q

)

Hilb
(
C[x1, . . . , xn]G, q

) =

n∏

i=1

(
1− qdi

)
·Hilb

(
C[x]H , q

)
. (1.4)

In other words
[
X(q)

]
q=ζd

=
∣∣{x ∈ X : cd(x) = x

}∣∣ =
∣∣{cosets gH : cdgH = gH

}∣∣.

The second equality in (1.4) follows since C[x]G = C[f1, . . . , fn] where deg(fi) = di.

Why does Theorem 1.43 generalize the example above?

Recall there that X =
(

[n]

k

)
= G/H where G = Sn and H = Sk ×Sn−k, because

G = Sn acts transitively on the k-subsets and H = S{1,2,...,k} ×S{k+1,k+2,...,n} is

the stabilizer of a typical k-subset {1, 2, . . . , k}.
We saw in discussing regular elements in Example 1.40 that inside Sn that the

n-cycle c = (1, 2, . . . , n) is a regular element, of order n. Hence Theorem 1.43

implies that one should have a CSP for X =
(

[n]

k

)
= G/H with C = 〈c〉 where

c = (1, 2, . . . , n) with the polynomial

X(q) =
Hilb

(
C[x]H , q

)

Hilb
(
C[x]G, q

) .

We know C[x]G = C[x1, . . . , xn]Sn = C[e1, e2, . . . , en], so

Hilb
(
C[x]G, q

)
=

1

(1− q)(1− q2) · · · (1− qn)
. (1.5)

On the other hand,

C[x]H =C[x1, . . . , xn]Sk×Sn−k

=C [e1(x1, . . . , xk), . . . , ek(x1, . . . , xk),

e1(xk+1, . . . , xn), . . . , en−k(xk+1, . . . , xn)] .

Therefore

Hilb
(
C[x]H , q

)
=

1

(1− q)(1− q2) · · · (1− qk) · (1− q)(1− q2) · · · (1− qn−k)
.

Combining this with (1.5) yields

X(q) =
Hilb

(
C[x]H , q

)

Hilb
(
C[x]G, q

) =

∏n
i=1(1− qi)

∏k
i=1(1− qi)∏n−k

i=1 (1− qi)
=

[
n

k

]

q

,

as desired. The last equality follows via [m]q = (1− qm)/(1− q).
The proof idea for deducing the CSP Theorem 1.43 from Springer’s Theorem

1.38 is our favorite idea of comparison of traces.
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Theorem 1.43; sketch of the proof Start with Springer’s isomorphism of G × C-

representations

C[x1, . . . , xn]/(f1, . . . , fn) ∼= ρreg.

Take H-fixed spaces on both sides, leaving an isomorphism of C-representations

(
C[x]/(f)

)H ∼= (ρreg)H .

Compare the trace of cd on the two sides:

• The left side is a graded vector space where cd acts via the scalar (ζd)k in its

k-th graded component. Also, one can show that the Hilbert series is

Hilb
((
C[x]/(f)

)H
, q
)

=
Hilb

(
C[x]H , q

)

Hilb
(
C[x]G, q

) = X(q).

Thus, cd acts with trace
[
X(q)

]
q=ζd

.

• The right side is the coset space X = G/H with C-action via cd(gH) = cdgH.

Then cd acts with trace
∣∣{gH : cdgH = gH

}∣∣ =
∣∣{x ∈ X : cd(x) = x

}∣∣.

Exercises

Exercise 1.4.1 Give a very short summary of the most important lessons of this

lecture. Carry out small examples that illustrate the main definitions and

results.

Exercise 1.4.2 We want to understand the coinvariant algebra for the dihedral

group G = I2(m), using the version of its reflection representation

ρ(1) : G = I2(m)→ GL2(C)

denoted ρ(1) in Exercise 1.2.3 (b), and shown equivalent to ρref in Exer-

cise 1.2.3 (c).

(a) Check the inclusion of rings C[x, y]G ⊃ C[xy, xm + ym]. It can be shown

that the inclusion is actually an equality, but let us assume this. Denote

f1 = xy, so that deg(f1) = d1 = 2, and denote f2 = xm + ym, so that

deg(f2) = d2 = m.

(b) Explain why the coinvariant algebra

C[x, y]/(f1, f2) = C[x, y]/(xy, xm + ym)

has the C-basis in various degrees given in Table 1.4.
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degree 0 1 2 · · · m− 1 m

C− basis 1 x, y x2, y2 xm−1, ym−1 xm (= −ym)

Table 1.4 Exercise 1.4.2 (b), C-basis for the coinvariant algebra C[x, y]/(f1, f2).

(c) Prove the following fake degree formulas fψ(q):

f1 = 1,

fdet(q) = qm

fρs(q) = qm/2 = fρt(q) for m even,

fρ
(j)

(q) = qj + qm−j for j = 1, 2, . . . , b(m− 1)/2c.

(d) Check that the answers in (c) are consistent for m = 3 with our previous

calculations of fψ(q) for S3 = I2(3).

Exercise 1.4.3 Let ζ be a primitive d-th root of unity, such as ζ = e2πi/d.

(a) Show that for positive integers a, b having a ≡ b mod d, one has

lim
q→ζ

[a]q
[b]q

=

{
a/b if a ≡ b ≡ 0 mod d

1 if a ≡ b 6≡ 0 mod d.

(b) We want to understand how a general q-binomial coefficient
[
n
k

]
q

behaves

when one sets q = ζ. Uniquely express

n = n′d+ n′′

k = k′d+ k′′

with n′, n′′, k′, k′′ ∈ Z and 0 ≤ n′′, k′′ ≤ d− 1. In other words, let n′, k′ be

the quotients and n′′, k′′ be the remainders when dividing n, k by d. Prove
[
n

k

]

q=ζ

=
(
n′

k′

)
·
[
n′′

k′′

]

q=ζ

.

This implies one only need understand
[
n′′

k′′

]
q=ζ

for 0 ≤ k′′, n′′ ≤ d− 1.

(c) Use part (b) to prove the CSP result for the action X =
(

[n]
k

)
C =

〈(1, 2, . . . , n)〉 and X(q) =
[
n
k

]
q

via direct evaluation of
[
X(q)

]
q=ζ`

, and

direct enumeration of
∣∣{x ∈ X : c`(x) = x}

∣∣.
Exercise 1.4.4 Prove that the two statements in Springer’s Theorem are equiv-

alent: the isomorphism of G× C-representations versus χρ(c) =
[
fρ(q)

]
q=ζ

.

Exercise 1.4.5 Prove that in Sn the only regular elements are the n-cycles, the

(n− 1)-cycles, and their powers.
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