Whitney numbers for poset cones
(arXiv:1906.00036)

Galen Dorpalen-Barry (Minnesota)
Jang Soo Kim (skku)
Vic Reiner (Minnesota)

AMS Southeastern Sectional
Geometric and Topological Combinatorics
November 3, 2019
• Zaslavsky's Theorems
 counting chambers in hyperplane arrangements and cones

• Braid arrangements, poset cones, and linear extensions

• Two formulas for any poset

• Foata's thesis and disjoint unions of chains
Zaslavsky's Theorems

\[A = \{H_1, H_2, \ldots, H_N\} \]

an arrangement of hyperplanes in \(V = \mathbb{R}^n \)

\(\mathbb{R}^n \)

dissects the complement \(V \setminus A \) into connected components called chambers

10 chambers

How to count them?
More generally, a cone K in A is any intersection of its (open) halfspaces, containing a subset of the chambers of A.

How to count them?

K_1: 5 chambers inside cone K_1

K_2: 3 chambers inside cone K_2
Introduce the poset of intersections $L(\mathcal{A}) := \{\text{intersection subspaces}\} \quad X = H_{i_1} \cap H_{i_2} \cap \ldots \cap H_{i_k}$ ordered via reverse inclusion.

and for the cones \mathcal{K}, the subposet of interior intersections

$$\text{int}(\mathcal{K}) = \{X \in L(\mathcal{A}) : X \cap \mathcal{K} \neq \emptyset\}$$
To count chambers, label $X \in \mathcal{L}(A)$ by Möbius function values $\mu(v,x)$

\[
\begin{array}{c}
\mu(-1) \quad \mu(-1) \quad \mu(-1) \\
H_1 \quad H_2 \quad H_3 \quad H_4 \quad H_5 \\
1 \quad 1 \\
\end{array}
\]

\[
\begin{array}{c}
\mu(0) = 4 \\
\mu(1) = 5 \\
\mu(2) = 1 \\
\end{array}
\]

\[
\mathbf{THEOREM \ (Zaslavsky \ 1979)}
\]

chambers of $A = \sum_{X \in \mathcal{L}(A)} |\mu(v,x)| = c_0 + c_1 + \ldots + c_n \quad \text{where} \quad c_k = \sum_{X \in \mathcal{L}(A) : \text{codim}(x) = k} |\mu(v,x)| \quad \text{kth Whitney number of A}

\[
\begin{array}{c}
\text{# chambers} \\
10 = 1 + 5 + 4 = c_0 + c_1 + c_2 \\
\end{array}
\]
More generally...

THEOREM (Zaslavsky 1977) For any cone K in A,

$$\text{# chambers of } A = \sum_{x \in \text{int}(K)} |\mu(v,x)| = c_0(K) + \ldots + c_n(K)$$

where $c_k(K) = \sum_{x \in \text{int}(A), \text{codim}(x) = k} |\mu(v,x)|$.

Diagram 1:

$H_2 \sim H_3 \sim H_4 \sim H_5$

V

$c_0 = 1$

$c_0 + c_1 = 1 + 4 + 0$

= 5 chambers

Diagram 2:

$H_3 \sim H_4$

V

$c_0 = 1$

$c_0 + c_1 + c_2 = 1 + 2 + 0$

= 3 chambers
Define the generating function

\[\text{Poin}(t,t) = c_0 + c_1 t + c_2 t^2 + \ldots + c_n t^n \]

Poincaré polynomial of \(\Lambda \)

It gets its name from the interpretation

\[c_k = \text{rank} \bigg[H_k \left(\mathbb{C}^n \setminus \Lambda, \mathbb{Z} \right) \bigg] \]

called the complexified complement of \(\Lambda \)

For any cone \(K \) in \(A \), we'll similarly call

\[\text{Poin}(K,t) = c_0(K) + c_1(K) t + c_2(K) t^2 + \ldots + c_n(K) t^n \]

the Poincaré polynomial of \(K \).

GOAL:

Interpret \(\text{Poin}(K,t) \) combinatorially, whenever possible.
Braid arrangements
(the motivating example)

The braid arrangement in \mathbb{R}^n has hyperplanes $H_{ij} = \{ x_i = x_j \}$ for $1 \leq i < j \leq n$ in \mathbb{R}^3 intersect with $[1]^n$.

Inside the braid arrangement,

\[
\text{chambers} \leftrightarrow \text{permutations } \sigma = (\sigma_1, \ldots, \sigma_n) \text{ in } S_n
\]
intersection subspaces X_{π}

set partitions $\pi=\{B_1, B_2, \ldots, B_k\}$ of $\{1, 2, \ldots, n\} = \bigcup_{i=1}^{k} B_i$
A = braid arrangement in \(\mathbb{R}^n \) has many expressions for its Poincaré polynomial:

\[
\text{Poin}(A, t) = (1 + t)(1 + 2t)(1 + 3t) \cdots (1 + (n-1)t)
\]

\[
= \sum_{\sigma \in S_n} t^{n - \#\text{cycles(\sigma)}}
\]

\[
= \sum_{\sigma \in S_n} t^{n - \#\text{LRmax(\sigma)}}
\]

where \(\text{LRmax}(\sigma) = \text{left-to-right maxima of } \sigma \)

e.g. \(\sigma = 418253697 \) has \(\#\text{LRmax}(\sigma) = 3 \)
Inside the braid arrangement,

\[\text{cones } K_p \leftrightarrow \text{ posets } P \text{ on } \{1,2,\ldots,n\} \]

\[K_p = \bigcap_{i < j} \{ x_i < x_j \} \]

\[\text{e.g. } K_p = \{ x_1 < x_2 \} \cap \{ x_3 < x_4 \} \leftrightarrow P = \{ 2 \overset{4}{\longrightarrow} 3 \overset{4}{\longleftarrow} \} \]

chambers inside \(K_p \leftrightarrow \) linear extensions

\[\sigma = (\sigma_1 < \sigma_2 < \ldots < \sigma_n) \text{ of } P \]

\[\Rightarrow \text{ LinExt}(P) \]

\[\text{e.g. } P = \{ 2 \overset{4}{\longrightarrow} 3 \overset{4}{\longleftarrow} 4 \} \]

\[\text{LinExt}(P) = \{ 1234, 1324, 1342, 3124, 3142, 3412 \} \]
Thus Zaslavsky's Theorem for cones gives

COROLLARY

\[
\# \text{LinExt}(P) = c_0(K_p) + c_1(K_p) + \ldots + c_n(K_p) = \left[\text{Poin}(K_p,t) \right]_{t=1}
\]

#Hard to compute for arbitrary posets \(P \)

[Brightwell-Winkler] 1991

PROBLEM:

Interpret \(\text{Poin}(K_p,t) \) for posets \(P \), by refining the count \(\# \text{LinExt}(P) \).
\begin{align*}
\text{EXAMPLE} & \quad P = \begin{array}{c} 2 \\ 1 \\ 4 \\ 3 \end{array} \\
\text{Lin}\text{Extn} & = \text{chambers} = 1 + 4 + 1 = 6
\end{align*}
PROBLEM: Interpret $\text{Poin}(K_p,t)$ for posets P, by refining the count $\# \text{LinExt}(P)$.

We had three solutions for $P=\circ \circ \ldots \circ$

where

$$\text{LinExt}(P)=S_n$$

$$\# \text{LinExt}(P)=n!$$

$$\text{Poin}(K_p,t) = (1+t)(1+2t)(1+3t)\ldots(1+(n-1)t)$$

$$= \sum_{\sigma \in S_n} t^{n - \#\text{cycles}(\sigma)}$$

$$= \sum_{\sigma \in S_n} t^{n - \#\text{LRmax}(\sigma)}$$
Two formulas for any poset

THEOREM (Porpalen-Barry-Kim-R. 2019)

\[\text{Poin}(K_P,t) = \sum_{\sigma \in S_n} t^{n - \# \text{cycles}(\sigma)} \]

DEFINITION:
- cycles of \(\sigma \) are antichains in \(P \)
- the quotient pre-poset \(P/\sigma \) collapses no strict order relations \(i <_P j \)

\[C_2 = 1 \]
\[C_1 = 4 \]
\[C_0 = 1 \]
What some of those quotient pre-posets look like:

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

\[a \rightarrow 4 \]
\[1 \rightarrow 3 \]
\[24 \rightarrow \]
\[1 \rightarrow 13 \]

P-transverse \(\overset{\text{def}}{=} \left\{ \begin{array}{l}
 \bullet \text{cycles of } \sigma \text{ are antichains in } P \\
 \bullet \text{the quotient pre-poset } P/\sigma \\
 \text{collapses no strict order relations } i<_P j
\end{array} \right. \)
Note the summation in

\[\text{Poin}(\mathcal{P}_P, t) = \sum_{\sigma \in S_n} t^{n - \#\text{cycles}(\sigma)} \]

is not over LinExt(P), unlike here:

THEOREM (Dorpalen-Barry - Kim - R. 2019)

\[\text{Poin}(\mathcal{P}_P, t) = \sum_{\sigma \in \text{LinExt}(P)} t^{n - \#P-LRmax(\sigma)} \]

where \(P-LRmax(\sigma) \) generalizes \(LRmax(\sigma) \)

(in an interesting way, not described here)

The proof is a bijection

\[
\begin{array}{ccc}
\text{LinExt}(P) & \rightarrow & P\text{-transverse permutations} \\
\tau & \mapsto & \sigma \\
\end{array}
\]

with \(\#P-LRmax(\tau) = \#\text{cycles}(\sigma) \)
Foata's thesis and disjoint unions of chains

Can we have the best of both worlds, i.e.

\[\text{Poin}(K_P,t) = \sum_{\sigma \in \text{LinExt}(P)} t^{\# \text{cycles}(\sigma)} \]

for some natural notion of "cycles" when \(\sigma \in \text{LinExt}(P) \)?

Amazingly, the answer is YES when \(P \) is a disjoint union of chains, where Foata's 1965 thesis can be re-interpreted as giving a natural factorization into cycles for elements of \(\text{LinExt}(P) \).
Labeling disjoint unions of chains two ways

\[P_{(2,3,2,3)} = \begin{array}{cccc}
5 & 10 & 1 & 1 \\
4 & 7 & 9 & 1 \\
1 & 1 & 1 & 1 \\
1 & 3 & 6 & 8
\end{array} \quad \leftrightarrow \quad \begin{array}{cccc}
2 & 1 & 4 & 1 \\
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array} \]

STANDARD LABELS

MULTISET LABELS

gives an easy bijection

LinExt(P_{a}) \leftrightarrow \text{permutations of the multiset } a_1 a_2 a_3 a_4 \ldots

38961427105 \leftrightarrow 2443121342
Foata defined intercalation product on multiset permutations in 2-line notation:

\[
\begin{pmatrix} 2 & 3 & 4 \\ 4 & 2 & 3 \end{pmatrix} \, \times \, \begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 4 \\ 2 & 4 & 3 & 1 & 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \\ 2 & 4 & 3 & 1 & 2 & 1 & 3 & 4 & 2 \end{pmatrix}
\]

And then he showed they have an essentially unique factorization into (ordinary) cycles, e.g.

\[
\begin{pmatrix} 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 & 4 & 4 \\ 2 & 4 & 4 & 3 & 1 & 2 & 1 & 3 & 4 & 2 \end{pmatrix}
\]

\[
= \begin{pmatrix} 2 & 3 & 4 \\ 4 & 2 & 3 \end{pmatrix} \, T \, \begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 4 \\ 2 & 4 & 3 & 1 & 1 & 4 & 2 \end{pmatrix}
\]

\[
= \begin{pmatrix} 2 & 3 & 4 \\ 4 & 2 & 3 \end{pmatrix} \, T \left(\begin{pmatrix} 4 \\ 4 \end{pmatrix} \, T \left(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \, T \left(\begin{pmatrix} 1 & 2 & 4 \\ 4 & 1 & 2 \end{pmatrix} \right) \right) \right)
\]

\[\text{allowed to swap these two, because they commute}\]
THEOREM (Dorpalen-Barry - Kim - R. 2019)

When P_a is a disjoint union of chains of sizes $a = (a_1, a_2, \ldots, a_n)$, then

$$\text{Poin}(P_a, t) = \sum_{\sigma \in \text{LinExt}(P_a)} t^{\#_{\text{Pfaff\text{-cycles}}}^{\text{Foata\text{-cycles}}} \sigma}$$

where $\#_{\text{Pfaff}\text{-cycles}}^{\text{Foata\text{-cycles}}} \sigma$ means the number of cycles in Foata's unique decomposition for the permutation of the multiset $1^{a_1} 2^{a_2} 3^{a_3} \ldots$ corresponding to σ.
Example \(a = (2,2) \)

\[
\begin{array}{ccc}
\sigma & \text{Permuation of } 1^2 2^2 & \# \text{Foot cycles}(\sigma) \\
1234 & (1 1 2 2) = (1) \tau(1) \tau(2) \tau(2) & 4 \ \{ \ c_0 = 1 \} \\
1324 & (1 2 1 2) = (1) \tau(1) \tau(2) \tau(2) & 3 \ \{ \ c_1 = 4 \} \\
1342 & (1 2 2 1) = (1) \tau(2) \tau(1) \tau(2) & 3 \\
3124 & (2 1 2 1) = (1 2) \tau(1) \tau(2) & 3 \\
3142 & (2 1 2 1) = (2) \tau(1 2) \tau(1) & 3 \\
3412 & (2 2 1 1) = (1 2) \tau(2 1) & 2 \ \{ \ c_2 = 1 \}
\end{array}
\]
Foata used his theory for generating functions, including a new proof of MacMahon's Master Theorem.

We used it to get this generating function for $\text{Poin}(P_a,t)$'s:

\[\sum_{a} \text{Poin}(P_a,t) x_1 x_2 \cdots = \frac{1}{1 - \sum_{j \geq 1} e_j(x) (t-1)(x t-1) \cdots ((j-1)t-1)} \]

where $e_j(x) = j^{\text{th}}$ elementary symmetric function

in x_1, x_2, \ldots
QUESTION:

Is there a Foata-style factorization theory for $\text{LinExt}(P)$ of all posets P, not just disjoint unions of chains?
Thanks for your attention!