7 pages. Show all work. No work no credit. No books/notes. Calculators: Scientific calculator are allowed. However, graphing calculators are not allowed. More specifically, calculators that display two or more lines are not allowed.

Additional Information:

1. If your answer involves one or more symbols, please define them. If you have an answer, there is no need to write it as a decimal number.

2. Let f and g be two given functions such that,

$$g(f(x)) = x, \text{ for every } x \text{ in the domain of } f$$

and

$$f(g(y)) = y, \text{ for every } y \text{ in the domain of } g$$

Then, f and g are inverses to each other with respect to the operation of composition. In symbols:

$$g = f^{-1}.$$
1. (20 pts.)

 (a) (10 pts.) Solve the quadratic equation,

 \[x^2 + bx - 1 = 0. \]

 (b) (10 pts.) Derive, from first principles, the solution formula for the quadratic equation of part (a).
2. (20 pts.)

(a) (5 pts.) Suppose that you deposit $100.00 into a savings account which pays 5% interest compounded annually. What is your balance after 1 year?

(b) (5 pts.) Suppose that you deposit $P(0)$ into a savings account which pays $r\%$ interest compounded annually. What is your balance after 1 year?

(c) (5 pts.) Suppose that you deposit $P(0)$ into a savings account which pays $r\%$ interest compounded semi annually. In other words, it is compounded 2 times a year. What is your balance after 1 year?

(d) (5 pts.) Suppose that you deposit $P(0)$ into a savings account which pays $r\%$ interest compounded daily. In other words, it is compounded 365 times a year. What is your balance after 2 years?
3. (15 pts.) Let \(f(x) = |x - 2| \) and \(g(x) = -x + 4 \).

Find

\[(f \circ g)(1). \]
4. (15 pts.) Let

\[\log_3 3 \approx 0.5646 \quad \text{and} \quad \log_3 5 \approx 0.08271 \]

Find the approximate value of \(75^{\frac{1}{3}} \). Note, there is no need to write the resulting fraction as a decimal.
5. (15 pts.)

(a) (7 pts.) Write 5^{-3} as a fraction.

(b) (8 pts.) Find,

$$\log_5\left(\frac{1}{125}\right).$$

Hint: Define,

$$f(x) = 5^x$$

and

$$g(y) = \log_5(y).$$

Then, the functions f and g are inverses to each other in the sense of the definition on page 1.
6. (15 pts.) Let

\[f(x) = x^2 - x - 9, \quad \text{for } x \geq \frac{1}{2}. \]

(a) (7 pts.) Solve this equation for \(x \) in terms of \(f(x) \). In other words, assume that \(f(x) \) is given and solve the resulting quadratic equation for \(x \).

(b) (8 pts.) Find \(f^{-1}(x) \). Note: This part of the problem is similar to, but different, from the ones of Section 3.4.