1. (15 pts.) Find solutions to the following differential equation, describing a harmonic motion:

\[
\frac{d^2 y(t)}{dt^2} + 4y(t) = 0.
\]

2. (15 pts.) An object is released from rest at a height of 100m above the ground. Let \(y(t) \) denote the displacement of this object from its initial position at time \(t \). Then, neglecting frictional forces, this function \(y(t) \) satisfies the initial-value problem:

\[
\frac{d^2 y(t)}{dt^2} = g, \quad y(0) = 0, \quad \frac{dy(t)}{dt}(0) = 0.
\]

Here, \(g \) is a constant, the gravitational constant. Find the time when the object hits the ground. In other words, find the time \(t_{100} \) such that

\[y(t_{100}) = 100. \]

3. (20 pts.) Use “separation of variables” to find solutions to the differential equation:

\[
(1 + y) \frac{dy(x)}{dx} = x \cos x. \tag{1}
\]

4. (a) (10 pts.)

Solve the quadratic equation,

\[
y^2 + 2y - 2(x \sin x + \cos x) = 1, \tag{2}
\]

for the variable \(y \) in terms of the variable \(x \).

(b) (10 pts.) Show that your function \(y = y(x) \) of part (a) satisfies the differential equation (1) of Problem 3.

5. Let the given function \(y(x) \) of the variable \(x \) satisfy the algebraic equation (2) of Problem 4a. Prove that \(y(x) \) also satisfies the differential equation (1) of Problem 3. Hint: Differentiate both sides of the algebraic equation (2) with respect to \(x \) and use the chain rule.

6. Find solutions to the differential equation:

\[
\frac{dy}{dx} + \frac{1}{x}y = 1 \ln x, \quad y(1) = 3.75.
\]