Math 5535 – Homework I

Hand in the starred problems only on Wednesday, September 23

From the text.

Pages Problems
23–25 *4, *5, 6, 7, 9, *10 (see hint), 14
34–36 1, 2, *4, *14, *16 (see hint)
41–43 1 (see hint), 4, 8

Hints: Problem 10, page 25. Since \(f(I) \supset I \) there exist points \(c, d \in I \) with \(f(c) = a \) and \(f(d) = b \). Consider the graph of \(f \) over the interval between \(c \) and \(d \). There are several cases corresponding to whether \(c < d \) or \(d < c \) and whether or not \(c \) or \(d \) equal \(a \) or \(b \).

Problem 16, page 35. According to the definition on page 12, you need to prove both stability and attractivity for \(f \) whereas you are given those two things for the second iterate \(f^2 \). Consider the even iterates \(f^{2n}(x) \) and odd iterates \(f^{2n+1} \) separately and use the fact that \(f^{2n+1}(x) = f^{2n}(f(x)) \).

Problem 1, page 41. Use the hint for the additional problem 1 below.

Plus the following additional problems.

1*. Consider the quadratic maps \(f(x) = x^2 - c \) where \(c \) is a constant. Determine for which values of \(c \) there exists an orbit of minimal period two. Find the two points \(x_0, x_1 \) of the orbit and compute the multiplier \(\mu = f'(x_0)f'(x_1) \). For which values of \(c \) is the orbit an attractor (i.e., asymptotically stable)? Hint: the formula below should be useful:

\[
x^4 - 2cx^2 + c^2 - c = (x^2 - x - c)(x^2 + x + 1 - c).
\]

2*. Let \(f(x) = 1 + \tanh(x) = \frac{2}{1 + e^{-2x}} \). Prove that \(x \) has a globally attracting fixed point \(\bar{x} \in [1, 2] \), i.e., \(\bar{x} \) is a fixed point such that for every initial state \(x_0 \in \mathbb{R} \), we have \(x_n \to \bar{x} \) as \(n \to \infty \).