Solutions to selected problems

7-(a):
If \(n \) is an even integer, then \(n = 2k \) for some integer \(k \). \(n^2 = 4k^2 \), and \(4 \mid 4k^2 \) since \(k^2 \) is integer . So, \(4 \mid n \).

7-(b):
If \(n \) is an even integer, then \(n = 2k \) for some integer \(k \). \(n^3 = 8k^3 \), and \(8 \mid 4k^3 \) since \(k^3 \) is integer . So, \(8 \mid n \).

7-(c):
If \(n \) is an odd integer, then \(n = 2k + 1 \) for some integer \(k \).
\(n^3 = 8k^3 + 12k^2 + 6k + 1 \), and
\(2n^3 = 16k^3 + 24k^2 + 12k + 2 = 8(2k^3 + 3k^2 + k) + (4k + 2) \). Suppose \(8 \mid 2n^3 \), then \(8 \mid 4k + 2 \), then \(4 \mid 2k + 1 \), which is impossible since \(2k + 1 \) is odd.

7-(d):
Suppose \(2^\frac{1}{2} \) is rational, then we can write \(2^\frac{1}{2} = \frac{p}{q} \) where \((p, q) = 1 \), \(p, q \) are integers.
Then we have \(2 = \frac{p^2}{q^2} \), or \(2q^2 = p^2 \). Therefore, \(p^2 \) is even and hence \(p \) is even too.
We can write \(p = 2m \), therefore we get \(2q^2 = 4m^2 \). Therefore, \(8 \) divide \(2q^2 \).
But by (c), we know \(q \) must be even. This contradicts to the fact that \((p, q) = 1 \).

12-(a):
Given \(\varepsilon > 0 \), if \(\forall s \in S \), \(s \leq b - \varepsilon \), then \(b - \varepsilon \) is a upper bound for \(S \) and \(b - \varepsilon < b \), which contradict to the fact that \(b \) is the least upper bound. So it must exist some \(s \in S \) such that \(b - \varepsilon < s \). And such \(s \leq b \) is trivial since \(b \) is an upper bound of \(S \).

12-(b):
No. Let \(S = \{ 1 \} \), then \(b = 1 \). Taking \(\varepsilon = 1 \), we can not find any element \(s \in S \) such that \(0 < s < 1 \).

12-(c):
If \(x = A \mid B \) is a cut in \(\mathbb{Q} \), by the result proved in class, we have
\(A = \{ r \in \mathbb{Q} \mid r < x \} \), and \(B = \{ r \in \mathbb{Q} \mid r \geq x \} \). Therefore, \(x \) is an upper bound of \(A \). Next we show that it is the least one. Suppose not, say \(y < x \), \(y \) is an upper bound for \(A \). By completeness, we can always find \(z \in \mathbb{Q} \) such that \(y < z < x \), but then \(z \in A \), which contradict to the assumption that \(y \) is a upper bound of \(A \).

25:
\(A = \{ x \in \mathbb{R} : a \leq x \leq b \} \), \(B = \{ y \in \mathbb{R} : \exists s, t \in [0, 1], s + t = 1, \text{and } y = sa + tb \} \).
(1) : \(A \subseteq B \)
If \(x \in A \), then \(a \leq x \leq b \). Write \(x = a + t(b - a) \), where \(t = \frac{x - a}{b - a} \). Then
\(x = (1 - t)a + tb \), where \((1 - t) + t = 1 \) and \(t, 1 - t \in [0, 1] \), i.e. \(x \in B \).
(2) : \(B \subseteq A \)
If \(y \in B \), then \(\exists s, t \in [0, 1], s + t = 1, \text{and } y = sa + tb \). So
\(y = (1 - t)a + tb = a + t(b - a) \). Since \(0 \leq t \) and \(a \leq b \), we get \(a \leq y \). Also
\(y = sa + (1 - s)b = b + s(a - b) \). Since \(0 \leq s \) and again \(a \leq b \), we have \(y \leq b \).
Therefore, \(y \in A \).
32:
Since each \(B_k \) is countable, it is either denumerable or finite. If every \(B_k \) is
denumerable. Then by Corollary 18, the union is denumerable and hence
countable. If some \(B_k \)'s are finite, then we extend them to \(C_k \) that are
denumerable. Also, let \(B_k = C_k \) if they are already denumerable. Then use
Corollary 18 again, the unions of \(C_k \) is denumerable. Therefore the union of \(B_k \)
are at most denumerable and hence countable.
If no \(B_k \) are denumerable, and elements in them repeat in some way or only
finitely many of them are nonempty, the union can be finite.

39-(a):
If \(f \) is uniformly continuous on \(D \), given \(\varepsilon > 0 \), then \(\exists \delta > 0 \) such that \(\forall x, y \in D \)
and \(|x - y| < \delta \), we have \(|f(x) - f(y)| < \varepsilon \). So, for any \(x \in D \) and \(\varepsilon > 0 \), just pick
such \(\delta > 0 \), then they satisfy the requirement for \(f \) being continuous at \(x \).
Therefore, \(f \) is continuous on \(D \).
Conversely, it is not true that continuity imply uniform continuity. The function
\(\frac{1}{x} \) on \((0, 1)\) is a counterexample. First, it is continuous on \((0, 1)\) since both
\(\sin(x) \) and \(\frac{1}{x} \) are continuous on \((0, 1)\) and the composition of continuous functions
is continuous. Given \(\varepsilon = 1 \), for any \(\delta > 0 \), there must exist \(n \) and \(m \) large enough
such that the distance between \(\frac{2}{\pi + 4n\pi} \) and \(\frac{2}{3\pi + 4m\pi} \) is less than \(\delta \), but their
difference of their value of \(f \) is \(2 > 1 \), which says that \(\frac{1}{x} \) is not uniformly
continuous on \((0, 1)\).

39-(b):
Given \(\varepsilon > 0 \), take \(\delta = \varepsilon/2 \), then if \(|x - y| < \delta \), then \(|x - y| < \varepsilon/2 \), i.e.
\(2x - 2y < \varepsilon \). Therefore, \(f(x) = 2x \) is uniform continuous on \((-\infty, +\infty)\).

39-(c):
Claim that \(f(x) = x^2 \) is not uniform continuous on \((-\infty, +\infty)\). Given \(\varepsilon = 1 \), for
any \(\delta > 0 \), take any \(x \) such that \(x > \frac{1}{2} \left(\frac{2}{3} - \frac{\delta}{2} \right) \), then we have the distance of \(x \) and
\(x + \frac{\delta}{2} \) is less than \(\delta \), however the distance between \(x^2 \) and \((x + \frac{\delta}{2})^2 \) is \(> 1 \).

16 (not graded):
Given a real number \(x \) the problem outlines an algorithm producing a sequence of
integers \(N \), \(x_1 \), \(x_2 \), \ldots. If we use \([x] \) to denote the greatest integer function then the
algorithm can be described as follows. Given \(x \) define \(N = [x] \) and then let \(u_1 = 10(x - N) \). At the next step we take \(x_1 = [u_1] \) and let \(u_2 = 100(x - N - \frac{x_1}{10}) = 10(u_1 - x_1) \). At each successive stage we have \(x_k = [u_k] \) and \(u_k = 10^k(x - N.x_1.x_2\ldots x_{k-1}) \)
where here and below we will use the standard decimal notation for finite sums
\[
N.x_1x_2\ldots x_k = N + \frac{x_1}{10} + \ldots + \frac{x_k}{10^k}.
\]

a. By definition of the greatest integer function, we have \(0 \leq x - N < 1 \), so
\(0 \leq u_1 < 10 \). Hence \(x_1 = [u_1] \in \{0, 1, \ldots, 9\} \). Similarly, at each stage we have
\(u_{k+1} = 10(u_k - x_k) \in [0, 10) \) so \(x_{k+1} \in \{0, 1, \ldots, 9\} \).
b. Using the definition of the greatest integer function we have \(x_k \leq u_k < x_k + 1 \) for all \(k \). From the formula for \(u_k \) this gives
\[
N.x_1 x_2 \ldots x_k \leq x < N.x_1 x_2 \ldots x_k + \frac{1}{10^k}.
\] (1)

In fact, the algorithm starting from \(x \) produces the sequence of digits \(N,x_1,\ldots \) if and only if (1) holds for all \(k \).

Now suppose that all of the digits \(x_l, l \geq k \) are \(x_l = 9 \). From (1) we have \(x < N.x_1 x_2 \ldots x_k + \frac{1}{10^k} \). From (1) with \(k \) replaced by \(k + n, n > 0 \) we have \(x \geq N.x_1 x_2 \ldots x_k.9999999 \) where there are \(n \) 9’s. It follows that \(u_{k+1} = 10^{k+1}(x - N.x_1 x_2 \ldots x_k) \) satisfies
\[
9.999999 \leq u_{k+1} < 10
\]
no matter how many 9’s appear on the left side. But this is impossible since any number any number \(u_{k+1} < 10 \) we can choose \(n \) such that \(\frac{1}{10^n} < 10 - u_{k+1} \) and so \(u_k < 10 - \frac{1}{10^n} = 9.99\ldots 9 \). So we have a contradiction.

c. Now given any sequence of digits \(N,x_1,\ldots \) which does not end in an infinite string of 9’s we need to find a real number \(x \) for which the inequalities (1) hold for all \(k \). Let
\[
x = lub\{N,N.x_1, N.x_1 x_2,\ldots, N.x_1 \ldots x_k,\ldots\}.
\] (2)

Since \(x \) is an upper bound for these numbers it will satisfy the lower inequality in (1) for all \(k \). Also, for each \(k \) the number \(N.x_1 \ldots x_k + \frac{1}{10^k} \) is an upper bound for the set appearing in (2). This follows from the fact that the digits are all at most 9 so that for any \(n > 0 \) we have by elementary arithmetic that
\[
N.x_1 \ldots x_{k+n} \leq N.x_1 \ldots x_k 9999999 < N.x_1 \ldots x_k + \frac{1}{10^k}
\]
where there are \(n \) 9’s. In fact, we can choose \(n > 0 \) so \(x_{k+n} \neq 9 \) and let \(b_n = N.x_1 \ldots x_k 9999999 \) where there are \(n \) 9’s. Then again by elementary arithmetic, we have
\[
N.x_1 \ldots x_{k+n'} < N.x_1 \ldots x_{k+n} + \frac{1}{10^{k+n}} \leq b_n
\]
for all \(n' \geq n \). Since the sequence in (2) is increasing, \(b_n \) is an upper bound for the whole sequence and hence also for \(x \). Therefore
\[
x \leq b_n < N.x_1 \ldots x_k + \frac{1}{10^k}
\]
holds and \(x \) does indeed have the given decimal expansion.

33-(a) (not graded):
It suffices to consider the intervals \([0,1], [0,1) \) and \((0,1) \) since there are linear bijections between these intervals and the corresponding ones with endpoints \(a < b \).

It is clear that \([0,1]\) can be decomposed into a disjoint union of denumerably many half-open intervals \(I_0, I_1,\ldots \) where \(I_0 = [0,1/2), I_1 = [1/2,3/4),\ldots, I_n = [1-1/2^n,1-1/2^{n+1}) \). We can also decompose \((0,1)\) into disjoint half-open intervals: \(J_0 = [1/2,1), J_1 = [1/4,1/2),\ldots, J_n = [1/2^{n+1},1/2^n) \). Define a bijection between \(f : [0,1) \rightarrow (0,1) \) by sending each \(I_n \) bijectively onto \(J_n \) (as both are half-open intervals, this is no problem). \(f \) can be extended to a bijection \(g : [0,1] \rightarrow (0,1) \) be mapping the extra point \(x = 1 \) to itself. So we have
\[
[0,1] \sim (0,1] \sim [0,1) \sim (0,1)
\]
where the middle bijection can be done with a linear map.