Answers for the homework assignment 2 of Math 5615H

3:
Let \(S = \{ p \} \) be a set of single point \(p \in M \), where \(M \) is a metric space. Assume \(\{ a_n \} \) is a sequence in \(S \), then \(a_n = p \) for all \(n \), and \(a_n \to p \in S \), which means that \(S \) contains all its limits. Therefore \(S \) is a closed subset of \(M \). Finite set of points is also closed since the finite union of closed set is closed.

6-(a):
Since \(T \) contains \(S \), \(\bar{T} \) contains \(T \), therefore \(\bar{T} \) contains \(S \). Also since \(\bar{T} \) is closed, and by definition \(\bar{S} \) is the intersection of all closed sets containing \(S \), we have \(S \subset \bar{T} \).

6-(b):
Since \(S \) is contained in \(T \), \(\text{int}(S) \) is contained in \(S \), therefore \(\text{int}(S) \) is contained in \(T \). Also since \(\text{int}(S) \) is open, and by definition \(\text{int}(T) \) is the union of all open sets which is contained in \(T \), we have \(\text{int}(S) \subset \text{int}(T) \).

14-(a):
If \(p \) is a limit of \(S \), then there exist \(a_n \in S \) such that \(a_n \to p \). Suppose \(\text{dist}(p,S) = \inf \{ d(p,s) : s \in S \} = \alpha > 0 \), then \(d(p,s) \geq \alpha \) for all \(s \in S \). However, for \(n \) large enough, we have \(d(p,a_n) < \alpha \), which lead to a contradiction. Therefore we must have \(\text{dist}(p,S) = 0 \).
On the other hand, if \(\text{dist}(p,S) = \inf \{ d(p,s) : s \in S \} = 0 \), given \(n \in \mathbb{N} \) there exist \(a_n \in S \) such that \(d(p,a_n) < \frac{1}{n} \). Therefore we have \(a_n \to p \) and \(p \) is a limit of \(S \).

14-(b):
Let \(p, q \in M \) and \(s \in S \), we have \(d(p,s) \leq d(p,q) + d(q,s) \). Therefore for any \(s \in S \) we get \(\text{dist}(p,S) \leq d(p,q) + d(q,s) \). Therefore, \(\text{dist}(p,S) - d(p,q) \) is a lower bound for \(\{ d(q,s) : s \in S \} \). Therefore we have \(\text{dist}(p,S) - d(p,q) \leq \inf \{ d(q,s) : s \in S \} = \text{dist}(q,S) \). That is \(\text{dist}(p,S) - \text{dist}(q,S) \leq d(p,q) \). Interchange \(p \) and \(q \), we get \(\text{dist}(q,S) - \text{dist}(p,S) \leq d(p,q) \). So we have \(| \text{dist}(p,S) - \text{dist}(q,S) | \leq d(p,q) \) for any \(p, q \in M \).
Given \(\varepsilon > 0 \), take \(\delta = \varepsilon \), then we get if \(d(p,q) < \delta \Rightarrow | \text{dist}(p,S) - \text{dist}(q,S) | < \varepsilon \). Therefore the function \(p \mapsto \text{dist}(p,S) \) is uniformly continuous function of \(p \in M \).

27-(a):
Since \(A_n \) are all non-empty, pick \(a_n \in A_n \). We claim that \(\{ a_n \} \) is a Cauchy sequence. Given \(\varepsilon > 0 \), since \(\text{diam} A_n \to 0 \), there exist \(N \) such that \(\text{diam} A_n < \varepsilon \) for all \(n \geq N \). If \(m, n \geq N \), then we have \(a_m, a_n \in A_N \) since \(A_n \) is nested decreasing sets. Therefore we get \(d(a_m, a_n) \leq \text{diam} A_N < \varepsilon \). This proves that \(\{ a_n \} \) is a Cauchy sequence.
Since \(M \) is complete, there exist \(a \in M \) such that \(a_n \to a \). Next we claim that \(a \in \cap A_n \). We know \(a_k \in A_n \) for all \(k \geq n \) and \(a_k \to a \). Therefore, \(a \) is a limit point of \(A_n \) for all \(n \). Since \(A_n \) is closed, we have \(a \in A_n \) for all \(n \). That is, \(a \in \cap A_n \).
Finally, we will prove that a is the only point in $\cap A_n$. Suppose we have $b \neq a$ and $b \in \cap A_n$, then $b \in A_n$ for all n. Since $a \neq b$, we hence $d(a, b) = \alpha > 0$. But $a, b \in A_n$ for all n and $\text{diam} A_n \to 0$, we must have $\alpha \leq \text{diam} A_n$ for all n, which is impossible. Therefore, such b does not exist and a is the unique point in $\cap A_n$.

40-(a):
Denote $G = \{(p, y) \in M \times \mathbb{R} : y = fp\}$. Let (p, y) be a limit of G, then there exist $(p_n, fp_n) \in G$ such that $(p_n, fp_n) \to (p, y)$. By theorem 21-(d), we have $p_n \to p$ and $fp_n \to y$. Since f is continuous, $fp_n \to fp$. Therefore $y = fp$, and $(p, y) = (p, fp) \in G$. Therefore, G contains all its limits and hence is closed.

40-(b):
Denote $fM = \{fp : p \in M\}$ the image of M under f. Since f is continuous and M is compact, by theorem 39, fM is compact. Also by theorem 31, we know $M \times fM$ is compact. $G \subset M \times fM$ and by (a) it is closed. Therefore, by theorem 35, we know G is compact.

40-(c):
Suppose f is not continuous at $p \in M$, then there exist $\varepsilon > 0$, such that for all $n \in \mathbb{N}$, we have $p_n \in M$ such that $d(p_n, p) < \frac{1}{n}$ and $|fp_n - fp| > \varepsilon$ for all n. Then consider $(p_n, fp_n) \in G$, since G is compact, there exist subsequence (p_{n_k}, fp_{n_k}) such that $(p_{n_k}, fp_{n_k}) \to (q, fq) \in G$ for some $q \in M$. Then we have $p_{n_k} \to q$, but $p_{n_k} \to p$ too since $p_n \to p$. So, $q = p$. And $fp_{n_k} \to fp$, but this contradict to the fact that $|fp_n - fp| > \varepsilon$ for all n. Therefore, f is continuous on M.

40-(d):
Take $f = \frac{1}{x}$ for $x \neq 0$, and $f0 = 0$.