Math 8502 — Homework I

due Friday, February 22. Write up any 4 of these 5 problems.

1. Consider a scalar, autonomous ODE \(\dot{x} = f(x), \ x \in \mathbb{R}^1 \), where \(f(x) \) is a polynomial of degree at least 2. Show that there is at least one maximal solution \(x(t) \) which is not defined for all \(t \in \mathbb{R} \).

2. Let \(\phi_t(x), \psi_t(y) \) be two flows on \(\mathbb{R}^n \). They are called linearly conjugate if there is an invertible linear map \(y = Qx \) such that
\[Q\phi_t(x) = \psi_t(Qx) \quad \text{for all} \ t \in \mathbb{R}, x \in \mathbb{R}^n. \]
They are topologically conjugate if there is a homeomorphism \(y = h(x) \), \(h : \mathbb{R}^n \to \mathbb{R}^n \), such that
\[h(\phi_t(x)) = \psi_t(h(x)) \quad \text{for all} \ t \in \mathbb{R}, x \in \mathbb{R}^n. \]

a. Let \(A, B \) be two \(n \times n \) real matrices. The corresponding linear flows are given by \(\phi_t(x) = e^{tA}x, \psi_t(y) = e^{tB}y \). Show that they are linearly conjugate if and only if the two matrices \(A, B \) are similar.

b. Show that the linear flows determined by the matrices below are topologically conjugate but not linearly conjugate. Here \(a, b \) are any two positive numbers not both equal to 1. Hint: Try a map, \(h \), of the form
\[y = (y_1, y_2) = (\text{sgn}(x_1)|x_1|^\alpha, \text{sgn}(x_2)|x_2|^\beta) \]
\[A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix}. \]

c. Same as part b. but for the matrices below, where \(a > 0, b \neq 0 \). Hint: It is possible to find an explicit formula for \(h(x) \). One approach uses the fact that the distance to the origin \(r(t) \) is decreasing for both flows. Let \(t_1(x) \) be the time when \(\phi_t(x) \) crosses the unit circle (find a formula for it) and consider \(h(x) = e^{-t_1(x)B}e^{t_1(x)A}x. \)
\[A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \quad B = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}. \]

d. Show that the linear flows determined by the matrices below are not topologically conjugate.
\[A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \quad B = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}. \]

3. Let \(\phi_t(x) \) be a flow on phase space \(\mathcal{D} \). Suppose \(\phi_t(x_0) \) exists for all \(t \geq 0 \). Define the omega limit set to be the set of limit points of the forward orbit:
\[\omega(x_0) = \{ y \in \mathcal{D} : \exists t_n \to \infty, \phi_{t_n}(x_0) \to y \}. \]
Suppose that there is a compact subset \(K \subset \mathcal{D} \) such that \(\phi_t(x_0) \in K \) for all \(t \geq 0 \). Show that \(\omega(x_0) \) is a non-empty, compact subset of \(K \). Also show that \(\omega(x_0) \) is an invariant set and that orbits in \(\omega(x_0) \) exist for all \(t \in \mathbb{R} \), i.e., show that if \(y \in \omega(x_0) \) then for all \(t \in \mathbb{R} \), \(\phi_t(y) \) exists and \(\phi_t(y) \in \omega(x_0). \)
4. The Lorenz Equation. Consider the following ODE in \mathbb{R}^3:
\[
\begin{align*}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= rx - y - xz \\
\dot{z} &= xy - bz
\end{align*}
\]
where $\sigma > 0$, $b > 0$, $r > 0$ are parameters.

a. Find all the equilibrium points. For which values of the parameters are they non-degenerate? For which values of the parameters are they hyperbolic and what are the dimensions of the stable and unstable manifolds?

b. Show that the z-axis is an invariant set which is contained in the stable manifold of the origin: $W^s(0)$.

c. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map $L(x,y,z) = (-x,-y,z)$. Geometrically, L is rotation around the z-axis by 180 degrees. Show that L is a symmetry of the flow of the Lorenz equation, i.e., if $(x(t), y(t), z(t))$ is a solution, so is $L(x(t), y(t), z(t))$. Show that L leaves the stable and unstable manifolds $W^s(0)$ and $W^u(0)$ invariant.

d. Show that if $r < 1$ then the Lorenz flow is gradient-like with respect to the function $g(x,y,z) = \frac{1}{2}(x^2/\sigma + y^2 + z^2)$, i.e., this function is strictly decreasing except at the restpoints. Use this to show that, in this case, $W^s(0) = \mathbb{R}^3$, i.e., every solution converges to 0.

5. (Linearized Hamiltonian Systems) Let $q \in \mathbb{R}^n$ and $p \in \mathbb{R}^n$ and let $z = (q, p) \in \mathbb{R}^{2n}$. Consider a Hamiltonian system of ODEs:
\[
\begin{align*}
\dot{q} &= H_p \\
\dot{p} &= -H_q \\
\dot{z} &= J\nabla H
\end{align*}
\]
or
\[
\dot{z} = J\nabla H, \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}.
\]

a. A $2n \times 2n$ matrix, A, is called Hamiltonian if JA is symmetric. If \bar{z} is an equilibrium point of a Hamiltonian system, show that the linearized ODE is of the form $\dot{v} = Av$ where A is a Hamiltonian matrix.

b. B is called symplectic if $B^TJB = J$ where B^T is the transpose of B. Show that A is Hamiltonian if and only if $B = e^{tA}$ is symplectic for all t. Hint: differentiate the expression $(e^{tA})^TJ e^{tA}$.

c. If A Hamiltonian matrix, show that the characteristic polynomial $p(\lambda) = |A - \lambda I|$ is an even function, i.e., $p(-\lambda) = p(\lambda)$. If B is symplectic show that $\lambda^{2n}p(1/\lambda) = p(\lambda)$. Hint: Start by multiplying $|A - \lambda I|$ on the left by $|J| = 1$.