
Math 5335     Section 2                                          Fall 2005 

Solutions to December 8 homework problems 
    
   
PROBLEM 9.17   To find any intersection points, we have to solve the following system 
of equations: 
                                   x2 + y2 = 6, 
                                   (x – 1)2 + y2 = 1. 
   
We expand (and slightly simplify) the second equation to  x2 –2x + y2 = 0.  Substituting 
into this from the first equation, we have  –2x + 6 = 0,  or  x = 3.  If we substitute this into 
the first equation, we obtain  y2 = –3.  Since this has no real solutions, we conclude that 
there are no intersection points.    
Note:   If we plot the two circles, we see that the smaller one [with center  (1,0)  and 
radius = 1]  is completely contained inside the larger one [with center  (0,0)  and 
radius = 

! 

6 ].  Thus the circles do not intersect, which certainly is consistent with the 
solution presented here.  But a complete solution definitely involves doing the algebra, or 
somehow proving that the circles don’t intersect. 
   
   
PROBLEM 9.20.   The figure and the equations of the lines are exactly as they were given 
in the back of the text.  To describe the Poincaré segments, we also need inequalities to 
specify the range of x-coordinates.  Thus: 
 

Segment Equation of Poincaré line x-range of segment 

! 

("2,4)(2,4)  x2 + y2 = 20,  y > 0 -2 ≤ x ≤ 2 

! 

("2,4)(0,4)  (x+1)2 + y2 = 17,  y > 0 -2 ≤ x ≤ 0 

! 

(0,4)(2,4)  (x–1)2 + y2 = 17,  y > 0 0 ≤ x ≤ 2 
   
   
PROBLEM 10.5.   The circle that gives the Poincaré line has center  (- 4, 0)  and radius  2.  
Therefore it intersects the x-axis at the points  (- 6, 0)  and  (- 2, 0).  These two points are 
therefore the direction indicators of the Poincaré line  (x + 4)2 + y2 = 4,   y > 0.  The one 
on the left belongs to the ray given by the inequality  x ≤ - 3,  and the one on the right 
belongs to the ray given by the inequality  x ≥ - 3.  Thus: 
 

Ray Direction indicator 
(x + 4)2 + y2 = 4,   x > –3 (–6, 0) 
(x + 4)2 + y2 = 4,   x > –3 (–2, 0) 

   
Note:   Literally correct descriptions of the Poincaré rays could be understood to include 
the inequality  y > 0  as well as the inequality that specifies the range of x-values.  But 
that is often omitted because it is understood that we’re working in the upper half plane. 
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PROBLEM 10.12.   The Poincaré line  (x – 2)2 + y2 = 1, y > 0  has direction indicators  
(1, 0)  and  (3,0),  while the Poincaré line  (x + 2)2 + y2 = 1, y > 0  has direction indicators  
(-1, 0)  and  (-3, 0).  Any line which is asymptotically parallel to both of these must have 
one direction indicator in common with each.  Here are the possibilities: 
 

Direction indicators (ω, 0) ρ  Poincaré line 
(1, 0)  and  (–1, 0) (0, 0) 1 x2 + y2 = 1,   y > 0 
(3, 0)  and  (–3, 0) (0, 0) 

! 

3  x2 + y2 = 3,   y > 0 
(3, 0)  and  (–1, 0) (1, 0) 2 (x – 1)2 + y2 = 4,   y > 0 
(1, 0)  and  (–3, 0) (–1, 0) 2 (x + 1)2 + y2 = 4,   y > 0 

   
   
PROBLEM 10.28.   The expression  max(x2, 1)  refers to the larger of the two numbers  
x2  and 1.  Therefore, the inequality  y ≥ max(x2, 1)  describes the set of all points that are 
above the parabola  y = x2  and also above the line  y = 1.  It is shown in the following 
figure: 

                          
   

Generally, the hyperbolic area of a region  Ω  is given as the integral  

! 

dxdy

y
2

"

## .   

If we want to do the integral in a single piece, then we use the “backwards(?)” order of 
integration, i.e., we integrate first with respect to x, treating the right side of the parabola 

as being given by the equation  

! 

x = y   and the left side of the parabola as being given 

by the equation  

! 

x = " y .  In this way, we get the following integral: 
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Alternatively, if we wish to do the “more traditional(?)” order of integration, where we 
integrate first with respect to y  (and therefore last with respect to x),  then we have to 
divide the region into three pieces, as shown in the following figure: 
   

                                 
   
By symmetry, the region on the right has the same area as the region on the left.  
Therefore, the area is given by the following sum of integrals: 
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{Please see the next page for Problem 10.31.} 
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PROBLEM 10.31.   We calculate the hyperbolic area as  π – α – β,  where  α  and  β  are 
the angular measures at the non-asymptotic vertices.  By symmetry (see the figures 
below), we have  α = β,  so that the hyperbolic area is  π – 2α. 
   
   
   
Method 1.  We find  cos α  by calculating the 
inner product of the two tangent vectors  at  
A.  Clearly,  (1,0)  is the unit tangent vector of 
the horizontal ray.  The radius of the circular 
arc is = 

! 

2 5 ,  so that it is given 

parametrically as  

! 

X(t) = 2 5(cos t,sin t).  
Hence, we find a tangent vector at  A = X(θ)  

by calculating  

! 

" X (#) = 2 5($sin#,cos#).  
Therefore, the unit tangent vector is   
(–sinθ, cosθ),  as indicated in the figure.  And 
then we calculate: 
   
     cosα = 〈(–sinθ,cosθ),(0,1)〉 = cosθ. 

x

A= (2,4)
!

"

(-2,4) = B

(0,1)

y

(–sin!, cos!)

(!,0)

 
 
Referring to the figure and noting that the circle has radius = 

! 

2 5 ,  we see that 

! 

cos" = 2

2 5
= 1

5
.  Therefore,  

! 

cos" = 1

5
,  so that  

! 

" = arccos 1
5

.  Hence the 

hyperbolic area is  

! 

" # 2arccos 1
5

.  Alternatively, we can write it as  

! 

" # 2arcsin 2

5
. 

When finding the numerical value, remember to set your calculator for radians, rather 
than degrees.  Thus, the numerical value is  0.927295. 
   
   
   
Method 2.  Again, we have symmetry, so that 
the hyperbolic area is  π – 2α.  The Poincaré 
rays that form the sides of the angle are shown 
in dark blue in the figure.  We use the formula 
from Theorem 7 in §10.3, with  (g,h) = (2,4),  
the direction indicators of the two rays being  

! 

("2 5,0)   and  (∞,0).  Therefore, we apply 
version (10.4) of the formula, as follows:  

! 
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We calculate  

! 

( 5 +1)
2

= 5 + 2 5 +1= 6 + 2 5 .  Therefore, the formula works out as 
follows: 
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While this looks different from the previous answer, we can show (optionally) that it’s 
really the same, as follows: 
   

                       

! 
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We can describe the beginning of this process by saying that we multiplied numerator 
and denominator by the “conjugate” of the denominator.  While it resembles the 
complex conjugate, it’s a slightly different entity, namely the conjugate in the quadratic 

number field  

! 

Q( 5) .  {This is the field of rational numbers with  

! 

5   adjoined; 

elements of  

! 

Q( 5)   are of the form  a + b

! 

5 ,  where  a  and  b  are rational numbers.  
Obviously, sums and differences exist in this algebraic system.  A bit of calculation is 
needed in order to check that products and quotients also exist inside the system.  Our 
method of simplification above does, however, exhibit the method needed for proving 
that quotients exist.} 
   
   
   

Back to the class homepage. 

http://www.math.umn.edu/~roberts/math5335/index.html
http://www.math.umn.edu/~roberts/math5335/index.html

