Please answer the following questions completely and clearly. An unsupported answer is worth few points.

(1) Sketch the graph of the function \(f(x, y) = 1 + 2x^2 + 2y^2 \).

We need to look at the level curves of the function in order to be able to draw a sketch of the graph. Notice that we need \(k \geq 1 \). For \(k = 1 \), we must have \(x = 0 \) and \(y = 0 \), and we have just a point. For \(k > 1 \) we have a family of circles which have larger and larger radius as \(k \) increases. From this we can conclude that our graph must be a circular paraboloid with vertex at \((0, 0, 1)\).

(2) Find \(\lim_{(x,y) \to (0,0)} \frac{x^2ye^y}{x^4+4y^2} \), if it exists, or show that the limit does not exist.

We start by seeing that \(f(x, y) = \frac{x^2ye^y}{x^4+4y^2} \) is undefined for \((0,0)\) and this is exactly the point we are approaching in our limit. We may have a limit which does not exist, but we would have to prove this. Consider approaching \((0,0)\) from two different paths:

1. First let’s approach along the x-axis. For \(x \neq 0 \), \(f(x,0) = 0 \) and so \(f(x,y) \to 0 \) as \((x,y) \to (0,0)\)

2. I might try approaching along the y-axis next, but this would give the same limit. Let’s approach along the path \(y = x^2 \). Then \(f(x,x^2) = \frac{x^2e^{x^2}}{x^4+4x^4} \) for \(x \neq 0 \) and so along this path, \(f(x,y) \to 1/5 \) as \((x,y) \to (0,0)\)

Since the two limits are not equal, we have shown that the limit does not exist.