These questions are all taken from your Algebra Review text; the page and problem numbers given here are from the third edition.

(p. 63, Ex 2(a)) Evaluate \((-2)^3\)^2.

(p. 77, #51) Give the degree of the polynomial \(xy^2 - 1 + x\).

(p. 77, #63) Evaluate the polynomial \(5y^3 - 3y^2 + 4\) for the value \(y = 2\).

(p. 93) Perform the indicated operations. Express your answer as a polynomial.

(#89) \((x - y)^2 - (x + y)^2\)

(#95) \((x - y)(x^2 + xy + y^2)\)

(p. 120) Completely factor each polynomial.

(#17) \(9x^2 - 16\).

(#19) \(x^2 + 2x + 1\).

(p. 146, #27) Reduce to lowest terms: \(\frac{y^2 - 25}{2y - 10}\).

(p. 147, #53) Evaluate the expression \(\frac{x^2 - 4x + 4}{x^2 - 25}\) for the value \(x = -4\).
Determine which of the values must be excluded from the domain of the variable in the expression $\frac{x^2+5x-10}{x^3-x}$. (There may be more than one answer.)

(a) $x = 3$    (b) $x = 1$
(c) $x = 0$    (d) $x = -1$

Simplify $\frac{8x}{x^2-1}$.

Simplify $\frac{2^3\cdot3^2}{2\cdot3-x}$.

Perform the indicated operations and simplify: $(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})$.

Evaluate $\sqrt{8(1+x)^3}$.

Simplify $\sqrt{\frac{4}{9x^2y^2}}$. 

Jonathan Rogness <rognness@math.umn.edu>  
January 17, 2005