(1) Using the definitions from lecture, prove that the intersection of infinitely many closed sets is a closed set. (If you reduce/modify this statement to one about open sets, then you should prove that statement about open sets and not just cite a previous result.)

Let \(\{ A_n \mid n \in \mathbb{N} \} \) be a family of closed sets. Then \(\forall n \in \mathbb{N}, \ B_n = \mathbb{R} - A_n \) is an open set (by def'n of "closed").

To prove that \(\bigcap_{n=1}^{\infty} A_n \) is closed, we need to show that \(\mathbb{R} - \bigcap_{n=1}^{\infty} A_n \) is open.

By DeMorgan's law, \(\mathbb{R} - \bigcap_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \). So let \(x \in \bigcup_{n=1}^{\infty} B_n \).

Then \(x \in B_k \) for some \(k \in \mathbb{N} \), and since \(B_k \) is open, there is some neighborhood \(N(x, \varepsilon) \subset B_k \subset \bigcup_{n=1}^{\infty} B_n \). Thus \(x \) is an interior point of \(\bigcup_{n=1}^{\infty} B_n \), so \(\bigcup_{n=1}^{\infty} B_n \) is open. \(\square \)

(2) Determine whether the set \(S = \{ 1 - \frac{1}{n} : n \in \mathbb{N} \} \subset \mathbb{R} \) is open, closed, both or neither. Justify your answer using any definitions or theorems from class.

Neither. To see that \(S \) is not open, we show \(0 \in S \) is not an interior point of \(S \):

\(0 \in S \) because \(0 = 1 - \frac{1}{1} \). But any neighborhood \(N(0, \varepsilon) \) contains negative numbers, and \(1 - \frac{1}{n} > 0 \) \(\forall n \in \mathbb{N} \).

To see that \(S \) is not closed, we show \(1 \in \mathbb{R} - S \) is not an interior point of \(\mathbb{R} - S \):

\(1 \in \mathbb{R} - S \) because \(\frac{1}{n} > 0 \) \(\forall n \in \mathbb{N} \), so \(1 - \frac{1}{n} < 1 \) \(\forall n \in \mathbb{N} \). But for any neighborhood \(N(1, \varepsilon) \), by the Archimedean property, \(\exists N \in \mathbb{N} \) s.t. \(N > \frac{1}{\varepsilon} \), so \(\varepsilon > \frac{1}{N} \), so \(1 - \varepsilon < 1 - \frac{1}{N} < 1 \).

Thus \(1 - \frac{1}{N} \in N(1, \varepsilon) \), so \(N(1, \varepsilon) \notin \mathbb{R} - S \). \(\square \)