§1 Logical Connectives

Math consists of statements, sentences which can be classified as true/false - although we might not know which!

Ex Which are statements?

p: \(2+2=4\) yes - true!
q: \(3+3=10\) yes - false!

r: this statement is false \textbf{No}.

s: It's cold outside yes - assuming \textbf{cold} is defined

t: Truth is beauty. \textbf{No}.

u: \(x^2-4x+3=0\). Yes - truth value depends on value of \(x\)
Given statements p, q we can create new ones using logic operators:

1. **Negation (\neg, \sim)**
 - $\neg p$ is true when p is false,
 - false when p is true.
 - Can represent as a "Truth Table":

 \[
 \begin{array}{c|c}
 p & \neg p \\
 \hline
 T & F \\
 F & T \\
 \end{array}
 \]

2. **Conjunction (\land, and)**
 - $p \land q$ is true when both p and q are true,
 - otherwise it's false.
 - Can represent as a "Truth Table":

 \[
 \begin{array}{c|c|c}
 p & q & p \land q \\
 \hline
 T & T & T \\
 T & F & F \\
 F & T & F \\
 F & F & F \\
 \end{array}
 \]
3. Disjunction (\(\lor \), or)

- \(p \lor q \) true if
 - \(p \) is true, \(q \) is true or both

⚠️ Rarer: Exclusive or (\(\lor, \text{xor} \))

- \(p \text{xor} q \) true if \(p \) or \(q \) is T but not both.

Ex
- \(p \): Jim is tall
- \(q \): Jim has red hair

\[p \land q \]: Jim is tall and has red hair.
\[\neg(p \land q) \]: NOT (Jim is tall and has red hair)

Don't write
- \(p \lor q \): Jim is not tall or Jim doesn't have red hair.
- \(\neg(p \lor q) \): Jim is not tall or Jim doesn't have red hair.
You try: truth table for \((\neg p) \lor (\neg q)\)

⚠️ \(\neg (p \land q)\) is T/F precisely when \((\neg p) \lor (\neg q)\) is T/F.
We say these statements are logically equivalent. This is one of De Morgan’s Laws:

\[
\neg (p \land q) = (\neg p) \lor (\neg q)
\]

In Words:
4. Implications (⇒, if..., then...)
If p, then q. \(\boxed{p \Rightarrow q} \)

p: antecedent (hyp.)
q: consequent (conclusion)

Mathematicians use following convention: \(p \Rightarrow q \) false only if p true and q is false. Otherwise it's true.

Ex. Determine truth values:

- If 2 is positive, then 4 is even.
 - T
- If 3 is odd, then pigs can fly.
 - F
- If pigs can fly, then I'm a rockstar.
 - T
If \(p \implies q \) is true, and \(q \implies p \) is true, we write

\[p \iff q \]

This is shorthand for "\(p \) and \(q \) are logically equivalent:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \implies q)</th>
<th>(q \implies p)</th>
<th>(p \iff q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

We also write: