§ 2. Quantifiers

"Quantifiers"... quantify things. In logic we mostly care if a statement is true in all cases, [at least] one case, or never.

Being lazy, we use symbols

Existential Quantifiers

\(\exists \): there exists... (at least one)

\(\exists! \): there exists a unique (exactly one)

\(\forall \): there does not exist

Universal

\(\forall \): for all
Other notation

\[\exists \text{ such that} \]

\[p(x): \text{stmt whose truth value depends on value of } x. \]

\[p(x) : x^2 - 1 = 0 \]

\[p(0) \text{ false} \]

\[p(1) \text{ true.} \]

Ex. Write these stmts in symbols:

For some \(x \), \(x^2 - 1 = 0 \).

\[\exists x \in \mathbb{R} : x^2 - 1 = 0. \]

For every real number \(x > 0 \), there is a \(y \) s.t. \(y^3 = x \).

\[\forall x > 0 \exists y \in \mathbb{R} : y^3 = x. \]

Every real \(\# \) has a cube root.

\[\forall x \exists \text{cube root } y !: \forall x \exists y \in \mathbb{R} : y^3 = x. \]

For every \(\# \) there is a larger \(\#. \)

\[\forall x \exists y \in \mathbb{R} : y > x. \]

There is a largest real number.

\[\exists x \in \mathbb{R} : \forall y, x > y. \]
Two more:

If $x>1$, then $x^2>1$.

$(\forall x \in \mathbb{R}, \ x > 1 \implies x^2 > 1)$

There is no square root of -2 in \mathbb{R}.

$\forall x \in \mathbb{R}, \ x^2 \neq -2$. (slang...)

$\forall x \in \mathbb{R}, \ x^2 \neq -2$.

⚠️ Negation of statements with quantifiers is tricky...

In words: the negation of "every day is sunny" isn't "every day is rainy"!

It's "At least one day is not sunny.

or "At least one day is rainy".

[Here ~ sunny = rainy]
Symbolically

- Negation of $\forall x, p(x)$ is $\exists x, \neg p(x)$.

i.e.

$\neg [\forall x, p(x)] \iff \exists x \exists 3 \neg p(x)$

- Also

$\neg [\exists 3 p(x)] \iff \forall x, \neg p(x)$

Ex: Negate these stmts:

(a) $\forall x, g(x) < 0$

$\exists x \exists 3 g(x) \geq 0$.

(b) $\exists x \exists f'(x) = 0$

$\forall x, f'(x) \neq 0$.

(c) $\forall 3 A \exists 3 B \exists 3 0 < 1x - n + 1 < 16$