§5: Basic Set Thy

Set Thy: Seems tedious at first, but **essential**. As you progress to higher level courses, the language of set thy replaces arithmetic!

Def A set is an unordered collection of objects called elements. Write \(x \in A \) to denote that \(x \) is an elt (or member) of \(A \).

If \(A \) has finitely many elt,

\[|A| = \# \text{ of elt in } A \]

= cardinality of \(A \).

(Else \(A \) is infinite).
Ways to define sets

listing elts
A: \{1, 2, 3, 4, 5\}
B: \{0, \Delta, \Box\}

defining property
C = \{x \mid x > 0\} = \{x : x > 0\}
superset: \{x \geq 0\}

Notes 1 A "universal set" is often implied or assumed.
A: integers? B: shapes?
C: real #'s?

Standard names
N: natural #'s = \{1, 2, 3, 4, \ldots\}
Z: integers = \{-2, -1, 0, 1, 2, \ldots\}
Q: rational #’s
R: real #’s
C: Complex #’s
F = finite field
P^a \setminus P^a elts.

(-4z3) = \{x \in \mathbb{R}\}
x \geq 1 \land x < 3
\phi = \{\}\
Subsets: A is a subset of B, \(A \subseteq B \), if \(x \in A \Rightarrow x \in B \).

Ex: \(B = \{1, 2, 3, 9\} \).
- \(A = \{1, 3, 4, 2\} \subset B \) — non-proper
- \(A = \{1, 3\} \subset B \) — proper
- \(A = \{1, 2, 4, 5\} \) Not! (is not a subset)
- \(\emptyset \subset B \) — proper

A subset of B is **proper** if it doesn’t contain all the elts of B. i.e. \(C \) but \(\neq \)

Notes
1. To prove \(A = B \), must show \(A \subseteq B \) and \(B \subseteq A \) (e.g. \(\subseteq \) and \(\subseteq \))
2. Some books use \(C, \subseteq \) for proper, proper or equal. (Think \(<, \subseteq \))
 - Most use \(C \) for both.
 - Our book uses \(\subseteq \) for both.
Forming new sets from old.

Intersection \(A \cap B = \{ x \mid x \in A \land x \in B \} \)

Venn Diagrams:

Union \(A \cup B = \{ x \mid x \in A \lor x \in B \} \)

Complement \(\overline{A} = A^C = \{ x \mid \neg (x \in A) \} = \{ x \mid \neg A \} \)

Our book: if \(X \) is universal set, \(\overline{A} = A^C = X \setminus A \).

Set Difference \(A - B = A \setminus B = \{ x \mid x \in A, x \notin B \} \)

= complement of \(B \) in \(A \)
Ex In \mathbb{N}, $A = \text{even #s, } B = \{1, 3, 5, ..., 10\}$.

$A \cap B = \{2, 4, 6, 8, 10\}$
$A \cup B = \{1, 2, 3, ..., 10\}$
$
\bar{A} = \text{odds}
A \triangle B = \{12, 14, 16, ..., 30\}
B \setminus A = \{11, 13, 15, 17, 19\}
A \cup \emptyset = A
B \cap \emptyset = \emptyset
$e

Ex Prove $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

\text{like: } x \cdot (y + z) = (x \cdot z) + (x \cdot y)$

\text{PF: } We must show $X \cap (Y \cup Z) \subseteq (X \cap Y) \cup (X \cap Z)$

Let x be any elt in $X \cap (Y \cup Z)$. We want to show $x \in (X \cap Y) \cup (X \cap Z)$.
$x \in X \cap (Y \cup \emptyset)$, so $x \in X$ and $Y \cup \emptyset$.

In particular, $x \in Y \cup \emptyset$ means $x \in Y$ or $x \in \emptyset$ (or both).

If $x \in Y$, then $x \in X \cap Y$ since it's in both X and Y.

Similarly, if $x \in \emptyset$, then $x \in X \cap \emptyset$.

Hence $x \in X \cap Y$ or $x \in X \cap \emptyset$ (or both).

$\Rightarrow x \in (X \cap Y) \cup (X \cap \emptyset)$.

Thus $X \cap (Y \cup \emptyset) \subseteq (X \cap Y) \cup (X \cap \emptyset)$.

You try: \subseteq
Warmup: Prove $A \setminus B = (U \setminus B) \setminus (U \setminus A)$
where U is the universal set.

Key: $A \setminus B \subseteq (U \setminus B) \setminus (U \setminus A)$, $(U \setminus B) \setminus (U \setminus A) \subseteq A \setminus B$.

Proof (No words — glibly bad!)

$x \in A \setminus B \iff x \in A$ and $x \notin B$.

$\iff x \in (U \setminus B)$ and $x \notin (U \setminus A)$

$\iff x \in (U \setminus B) \setminus (U \setminus A)$

Hence $\text{LHS} \subseteq \text{RHS}$.

Next, let $x \in (U \setminus B) \setminus (U \setminus A)$, which means $x \in U \setminus B$ and $x \notin U \setminus A$.

I.e. $x \notin B$ and $x \in A$.

Hence $x \in A \setminus B$, and $\text{RHS} \subseteq \text{LHS}$.

Hence shown both inclusions,
we see that the sets are equal.

Alternatively, could change each
\iff in 1st half to \iff. \(\square\) \(\square\) \(\square\)
Indexed Sets

Often we use families of sets.

\[E \times A_n = [-n, n], \ n \in \mathbb{N}. \]

\[A_1 = [-1, 1] \quad A_{100} = (-100, 100) \quad n: \text{index} \]

\[A_\infty = (-\infty, \infty) \]

\[\mathbb{N}: \text{index set} \]

\[\text{set of indices.} \]

We'll often use notation similar to

\[\sum A_n = a_1 + a_2 + a_3 + \cdots + a_n \]

when dealing with indexed sets.

\[\bigcup_{n=1}^{5} A_n = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \]

\[= [-1, 1] \cup [-3, 3] \cup \cdots \cup [-5, 5] \]

\[= [-5, 5] \]

To prove: Let \(x \in [-5, 5] \), show it's in \(\bigcup_{n=1}^{5} A_n \) and vice versa. (two inclusions).

Let \(x \in (-5, 5) = A_5 \). Since \(A_5 \) is a subset of \(A_1 \cup A_2 \cup \cdots \cup A_5 \), \(x \in \bigcup_{n=1}^{5} A_n \).

Ex: $\bigcap_{n=1}^{\infty} A_n = [-4,1] \cap [-2,3] \cap \ldots = [-1,1]$

Proof: First let $x \in \bigcap_{n=1}^{\infty} A_n$, so $x \in A_n \forall n$. In particular, $x \in A_1 = [-1,1]$. Thus $x \in [-1,1]$ and $\bigcap_{n=1}^{\infty} A_n \subseteq [-1,1]$

Conversely, let $x \in [-1,1]$. Then $x \in [-n,n]$ for all $n \in \mathbb{N}$ i.e. $x \in A_n$ for all $n \in \mathbb{N}$ \[\Rightarrow x \in A_1 \cap A_2 \cap A_3 \cap \ldots = \bigcap_{n=1}^{\infty} A_n.\]
Thus $[-1,1] \subseteq \bigcap_{n=1}^{\infty} A_n.$

Hence \[\bigcap_{n=1}^{\infty} A_n = [-1,1].\]