Chapter 3: PR.

§10. \(\mathbb{N} \) and induction

\(\mathbb{N} \) provides nice intro to properties of number systems/sets. For example:

Axiom 10.1 \(\mathbb{N} \) is well-ordered, meaning

\[
\forall \emptyset \neq S \subseteq \mathbb{N}, \exists \text{ "least" elt } m \in S \text{ s.t. } m \leq k \forall k \in S.
\]

Ex. \(S = \{ 10, 9, 100, 99, 1000, 999, \ldots \} \subseteq \mathbb{N} \)

9 is least elt here: \(9 \leq k \forall k \in S \).

Aside #1! After choosing smallest elt, do it again for remaining #’s. Then again. And again. This lets you write all of \(S \) in “ascending order.”

\[S = \{ 9, 10, 99, 100, 999, 1000, \ldots \} \]
Aside #2 Can every set be well-ordered?!

What's the least elt of \((0,1) \subseteq \mathbb{R}\)?

Well Ordering "Them" Every set can be well ordered using some relation.

Hmmm... believable?

Equivalent to

Axiom of Choice Given any infinite collection of bins (sets), we can choose one object (elt) from each.

More believable, but has weird consequences like well ordering "Them" or...
Banach-Tarski Paradox

A sphere in \mathbb{R}^3 can be cut into a finite number of pieces which can be rearranged and glued back together into **two identical copies** of the original sphere. (!!!)

Not physically possible - pieces are "infinitely jagged" with parts that are smaller than atoms.
Theorem 10.2 (Proof by Induction)

Let \(P(n) \) be a statement which is true/false for each \(n \). If:

1. \(P(1) \) is true \(\textbf{base, anchor} \)
2. \(\forall k \in \mathbb{N}, \ P(k) \text{ true } \Rightarrow P(k+1) \text{ true.} \) \(\textbf{induction step} \)

Then \(P(n) \) true for all \(n \).

Proof

Assume (a), (b) true but \(\exists \) some \(P(m) \) which is false.

Let \(S = \{ m \in \mathbb{N} : P(m) \text{ is false.} \} \).

WOP of \(\mathbb{N} \) says \(\exists \) least elt \(m \in S \) by assumption \(S \neq \emptyset \).

(a) \(\Rightarrow \) \(m \neq 1 \).

m least value for which \(P(m) \) false.

\(P(m-1) \) true, \((b) \Rightarrow P(m) \) true \(\gamma \).

10.3 Obligatory Historical Example

Prove \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \).

Ex

\(P(1) : 1 = \frac{1(1+1)}{2} = \frac{2}{2} = 1. \)

\(P(2) : 1 + 2 = 3, \ \frac{2(2+1)}{2} = \frac{6}{2} = 3. \)
1 + 2 + 3 + \ldots + 999 + 1000
\frac{1000 + 999 + 998 + \ldots + 1}{2}
\text{Sum is } \frac{1000 \cdot (1001)}{2}

\text{Inductive Step: Assume } P(k), \text{ show } P(k+1) \text{ is true:}

1 + 2 + 3 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)

\text{Then:}

1 + 2 + 3 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)

\text{Can also arrive at same answer which was } P(k+1) \text{ form:}

\frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2}
Avoid:
Assume $P(b)$, then:

\[\frac{b(b+1)}{2} + b+1 = \frac{(b+1)(b+2)}{2} \]

\[\frac{b(b+1)}{2} + b+1 = \frac{(b+1)(b+2)}{2} \]

\[\text{LHS} = \text{RHS} \]

\[a = b \]
\[a^2 = b^2 \]
\[a^2 - b^2 = b^2 - b^2 \]
\[(a-b)(a+b) = 0 \]
\[a+b = 0 \]
\[a = -b \]
\[a = -a \]
\[1 = -1. \]

Avoid "two-sided" equality proofs - too easy to divide/multiply by zero, etc.