§12 Reminder

Def \(m = \sup S \) (SSR) iff

(a) \(m \geq s \) \(\forall s \in S \)
(b) \(m < m' \Rightarrow \exists s \in S \) s.t. \(m' < s \).

⚠️ In practice, we prove (b) by letting \(\varepsilon > 0 \) (presumably small), setting \(m' = m - \varepsilon \).

Today: §13 Topology ≠ Topography

Many topics/defs here:

* 1. neighborhoods
* 2. interior, boundary pts.
* 3. open, closed sets in \(\mathbb{R} \)
* 4. accumulation pts
* 5. closure of a set.
§13. Topology of \(\mathbb{R} \)

In this context, "topology" refers to "open and closed sets."

With sequences, limits, we talk about "points close to \(x \)." In this section we start to give that idea a careful def.

\[\text{Def Let } x \in \mathbb{R}, \varepsilon > 0. \text{ Then } \]
\[B_\varepsilon(x) = N(x;\varepsilon) = \{ y \in \mathbb{R} \mid |x-y| < \varepsilon \} \]
\[\text{is a neighborhood (nbhd) or } \varepsilon \text{-nbhd of } x, \text{ with radius } \varepsilon. \]
\[N^d(x;\varepsilon) = \{ y \mid 0 < |x-y| < \varepsilon \} = (x-\varepsilon, x) \cup (x, x+\varepsilon) \]

is deleted nbhd of \(x \).

\[\text{Ex } \]
\[N(2;1) = (1,3). \]
\[N^d(2;1) = (1,2) \cup (2,3) \]
Def \(x \in \mathbb{S} \in \mathbb{R} \) is an interior point of \(S \) if \(\exists \) nbhd \(N \) of \(x \) in \(S \): \(N \subseteq S \).

\[E \in (0,5) \]

\[\begin{array}{c}
N(3;1) = (2,4) \cap (0,5) \checkmark \\
N(3;3) = (1,5) \cap (0,5) \checkmark \\
N(3;4) = (-1,7) \notin (0,5) \times
\end{array} \]

If every nbhd of \(x \) contains pts in \(S \) \((N_nS \neq \emptyset)\) and also contains pts not in \(S \) \((N_n(M \setminus S) \neq \emptyset)\), then \(x \) is a boundary point of \(S \).

\[E \in [0,4] \]

\[\forall E > 0, N(x;E) \text{ will contain pts in } [0,4] \text{ and pts } > 4 \text{ (hence in } \mathbb{R} \setminus [0,4]) \]
Ex $S = \{0, 2, 4\}$

No int. pts!
Bdy pts: $0, 2, 4$.

\[0 \quad 2 \quad 4 \quad \rightarrow \mathbb{R}\]

\[\forall \epsilon > 0, \ N(2; \epsilon) \cap S \Rightarrow 2 \text{ not interior pt.}\]
\[N(2; \epsilon) \text{ contains } 2, \text{ it's not in } S, \text{ does contain } 2 \in S.\]

\[\Rightarrow \text{ a bdy pt.}\]

Ex $T = [0, 1)$

Choose $x \in \mathbb{R}$, $0 < x < 1$.

Compute $|x - 0|$, $|x - 1|$.

Choose δ to be the smaller of the two.

$\Rightarrow N(x; \delta) \subseteq [0, 1)$

Any $N(0; \epsilon)$ will contain pts in, out of $[0, 1) \Rightarrow 0$ is bdy pt.

Same for 1
(bdy pts need not be in the set.)
Def: $S \subseteq \mathbb{R}$ is open if every pt in S is an interior pt, i.e:

$$\forall x \in S \exists \varepsilon > 0 \exists B_N(x; \varepsilon) \subseteq S$$

Examples

1. Any interval $(a, b) = \{ a < x < b \}$ is open.

Let $x \in (a, b)$, choose

$$\varepsilon = \min \{ b-x, x-a \}$$

Then $B_N(x; \varepsilon) \subseteq (a, b)$

2. Since $B_N(x; \varepsilon) = (x-\varepsilon, x+\varepsilon)$, neighborhoods are open.
 Can Refer to "open disk."
3. \(\mathbb{R} \) is open.

 Let \(x \in \mathbb{R} \). For any \(\varepsilon > 0 \),

 \(N(x; \varepsilon) \subseteq \mathbb{R} \). Done.

4. \(\emptyset \subseteq \mathbb{R} \) is open.

 If \(x \in \emptyset \), then \(x \) is interior pt.

 always FALSE

 for \(S = \emptyset \), so implication \(\Rightarrow \) TRUE.

5. \(S = (0,1) \cup (4,5) \)

 \(x \in S \Rightarrow x \in (0,1) \) or \(x \in (4,5) \).

 If \(x \in (0,1) \), \((0,1) \) is an open set,

 so \(\exists \varepsilon \) s.t.

 \(N(x; \varepsilon) \subseteq (0,1) \subseteq S \)

 Similar for \(x \in (4,5) \) \(\Rightarrow \) \(S \) open.

6. \(S = (1,6) \cap (2,9) \)

 \(x \in S \Rightarrow x \in (1,6) \) and \(x \in (2,9) \),

 both of which are open.

 \(\exists \varepsilon_1, \varepsilon_2 > 0 \) \in

 \(N(x; \varepsilon_1) \subseteq (1,6), \)

 \(N(x; \varepsilon_2) \subseteq (2,9) \).
Here generally,

Thm 13.10

(a) any union of open sets is open.
(b) \(\cap \) of finitely many open sets is open.

Proof:

(a) Suppose \(A_j \) is open for all \(j \in J \). (\(J = \mathbb{N} \)? \(\{1, 2\} \)? etc.)

Let \(x \in \bigcup A_j \Rightarrow x \in A_n \), some \(j \in J \).

\(A_n \) is open by assumption,

so \(\exists \varepsilon > 0 \) s.t. \(N(x; \varepsilon) \subseteq A_n \).

Since \(A_n \cap \bigcup A_j \), we also have \(N(x; \varepsilon) \subseteq \bigcup A_j \), \(j \in J \).
PF (W): Suppose \(A_1, \ldots, A_n \) are open.

Let \(x \in A_1 \cap \cdots \cap A_n \Rightarrow x \in A_i \)

\[\exists \varepsilon_i > 0, \varepsilon_2 > 0, \ldots, \varepsilon_n > 0 \]

\(\text{s.t.} \quad N(x; \varepsilon_i) \subseteq A_i, \quad N(x; \varepsilon_2) \subseteq A_2, \ldots, \quad N(x; \varepsilon_n) \subseteq A_n \)

If \(\varepsilon = \min \{ \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \} \)

then \(N(x; \varepsilon) \subseteq A_1 \cap \cdots \cap A_n \).

\(\Rightarrow A_1 \cap \cdots \cap A_n \text{ open.} \)

⚠ Finitely many necessary here

by \(c \min \{ \varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots \} \) might not exist.

\(\exists x \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n} \right) = \emptyset \) not an open set.
Def: \(S \subseteq \mathbb{R} \) is closed if \(\mathbb{R} \setminus S = S^c \) is open.

⚠️ closed, open \textbf{NOT} opposites:

"not open" ≠ closed!

Think: \([0,1]\)

\section*{Examples}

1. \([0,1] = S. \quad \mathbb{R} \setminus S = S^c = (-\infty,0) \cup (1,\infty)\)
 open, so
 \(S \) is closed.

2. \((1,2]. \quad \mathbb{R} \setminus (1,2] = (-\infty,1] \cup (2,\infty)\)
 \(\uparrow \) not open
 \(\uparrow \) open

3. \(\mathbb{R} \)
 \(\mathbb{R} \setminus \mathbb{R} = \emptyset \)
 \(\emptyset \) is open \(\Rightarrow \) \(\mathbb{R} \) is closed.

\(\mathbb{R} \) is "clopen".
Different Characterization:

Thm: $S \subseteq \mathbb{R}$ closed if it contains all its bdy points.

⚠️ That’s the def in book. S Our def then given as a Thm.

Interiors and boundaries clearly important, so we name these sets:

Def: $\text{int } S = \text{set of interior pts}$

$\text{bd } S = \text{set of bdy pts}$.

Above def's, thms can be written:

S open iff $S = \text{int } S$.

S closed iff $\text{bd } S \subseteq S$.
Cool Stuff

Any of finitely many open sets is open, but any of infinitely many can be closed!

\[\bigcap_{n=1}^{\infty} A_n = \emptyset \text{ which is not an open set, b/c any } \mathbb{N}(0;\varepsilon) \text{ will include pts not in the intersection.} \]

\[\bigcup_{n=1}^{\infty} A_n = \mathbb{R} \text{ which is open or } \mathbb{R} \text{ closed.} \]

Similarly, any of finitely many closed sets is closed, but any of infinitely many can be open!

\[\bigcup_{n=1}^{\infty} B_n = \mathbb{R} \text{ open (and clopen)} \]

\[U \left[\frac{1}{n}, 2 - \frac{1}{n} \right] \cdots \cup (0, 2) \text{ open but not closed.} \]
A hybrid of interior, bdg pts:

Def \(x \in \mathbb{R} \) is an accumulation pt of \(S \) if \(\forall \varepsilon > 0, \ N^*(x;\varepsilon) \cap S \neq \emptyset \).

\(x \) need not be in \(S \) to be an acc. pt of \(S \).

- \(\exists x \in \mathbb{R} \) s.t. \((x-\varepsilon, x) \cup (x, x+\varepsilon) \)

\(x = \frac{7}{10} \) is acc pt of \(S \).

\(0 \) is acc pt. \(1 \) too.

Set of acc pts: \(S' = [0,1] \)

IN \& \(\mathbb{R} \)

Any \(n \in \mathbb{N} \) is bdg pt of \(\mathbb{N} \) (\(\mathbb{N}(n;\varepsilon) \) will include \(n \) and it's not in \(\mathbb{N} \)).

But no \(n \in \mathbb{N} \) is an acc. pt.

(Set of acc pts is \(\emptyset \)).

\(\mathbb{N} \) is an isolated pt.
Def: closure of $S = \text{cl } S = S \cup S'$

Ex: $\text{cl } (0,1) = (0,1) \cup \{0,1\} = [0,1]$

Thm: Let $S \subseteq \mathbb{R}$.

(a) S closed $\iff S' \subseteq S$.
(b) $\text{cl } S$ is closed.
(c) S closed iff $S = \text{cl } S$.
(d) $\text{cl } S = S \cup \text{bd } S$.

\[S \cup S' = \text{cl } S = S \cup \text{bd } S \]

\[\text{def} \quad (d) \]

$\Rightarrow S' = \text{bd } S$

Think: $[0,1]$, where $S' = (0,1]$ and $\text{bd } S = \{0,1\}$.