Ex if our list looked like this:

\[x_1 = 0.\overline{123123123} \ldots \]
\[x_2 = 0.\overline{3333333333} \ldots \]
\[x_3 = 0.\overline{22222} \ldots \]
\[x_4 = 0.\overline{98765} \ldots \]

\[b = 0.\overline{2232} \ldots \]

ensures \(b \neq x_1 \)
ensures \(b \neq x_3 \)

(\text{and so on...} \)
Another weird example $(0,1) \sim (0,1]$

It's not so bad to add one # to a denumerable set and show the result is equinumerous. [ex $f: \mathbb{N}_0 \to \mathbb{N}, f(n) = n+1$] It's much harder with an uncountable set.

Idea: To construct bij'n $f: (0,1) \to (0,1]$, use $f(x) = x$ (id fn) for basically everything. Need to hit 1. Choose to send $\frac{1}{2} \mapsto 1$. Creates new "gap" in range at $\frac{1}{2}$. Send $\frac{1}{4} \mapsto \frac{1}{2}$. (and so on)
Define $f : (0, 1) \rightarrow (0, 1]$ as follows:

$$f(x) = \begin{cases} 2 \left(\frac{1}{2^n} \right) = \frac{1}{2^{n-1}}, & x = \frac{1}{2^n}, \text{ some } n \in \mathbb{N} \\ x, & \text{otherwise.} \end{cases}$$

(you check: bijection $\Rightarrow (0, 1) \sim (0, 1]$)
Thm TFAE (The following are equivalent)

(a) \(S \) is countable
(b) \(\exists \) injection \(f: S \to \mathbb{N} \)
(c) \(\exists \) surjection \(g: \mathbb{N} \to S \).

Usually we prove "just enough" to establish equivalency

Sketch of Pf of (a) \(\Rightarrow \) (c)

If \(S \) is finite, \(S = \{s_1, s_2, \ldots, s_n\} \)
define
\[
\begin{align*}
g(1) &= s_1 \\
g(2) &= s_2 \\
&\vdots \\
g(m) &= s_n \\
g(m) &= s_n, \ m > n
\end{align*}
\]

If \(S \sim \mathbb{N} \), \(S = \{s_1, s_2, s_3, \ldots\} \): \(g(n) = s_n \)
Putting it all together

If \(S \sim T \), they have the same cardinality or cardinal \(\# \).

(Remember, this is an equiv. reln. \([Tu/Th]\))

So \(\{1,2,3\}, \{a,b,c\} \) not equal as sets, but have same cardinality.

Def 2.4.15 Denote cardinal number of \(S \) by \(|S| \), so \(|S| = |T| \)

iff \(S \sim T \), i.e.

- Define \(|S| \leq |T| \) if \(\exists \) injection \(S \rightarrow T \).

- Define \(|S| < |T| \) if \(|S| \leq |T| \) but not \(|S| = |T| \).

Ex \(|\mathbb{N}| = |\mathbb{Z}| : f: \mathbb{N} \rightarrow \mathbb{Z}, f(m) = m \) [“inclusion \(\mathbb{N} \rightarrow \mathbb{Z} \)”]

\(|\{1,2,3\}| < |\mathbb{N}| : f \) inclusion/identity, but \(\{1,2,3\} \neq |\mathbb{N}| \)
The cardinal number or cardinality of a set is (informally) its size:

- cardinal # of \emptyset is $|\emptyset|=0$.
- cardinal # of $I_n=\{1,2,\ldots,n\}$ is $|I_n|=n$
- $|N|=\aleph_0$
- $|\mathbb{R}|=c$ (continuum)

Aside: The Continuum Hypothesis

There is no set whose cardinality is strictly b/w \aleph_0 and c.
Thm 2.4.15 Let S, T, U be sets.

(a) $S \subseteq T \Rightarrow |S| \leq |T|$

(b) $|S| \leq |S|$

$|S| \leq |T|$, use part (a)

(c) $|S| \leq |T|$ and $|T| \leq |U| \Rightarrow |S| \leq |U|$

\exists inj $f:S \rightarrow T$ \exists inj $g:T \rightarrow U$, and $gof:S \rightarrow U$ injn.

$\Rightarrow |S| \leq |U|.$

(d) $m, n \in \mathbb{N}, m \leq n \Rightarrow |\text{Im}| \leq |\text{In}|$

$\text{Im} = \{1, 2, \ldots, m\} \subseteq \{1, 2, 3, \ldots, n\} = \text{In}$, use (a).
\[\exists \infty \text{ many } \infty \text{'s...} \]

\[
\text{Def} \quad \text{Given a set } S, \text{ the power set of } S, \text{ written } \mathcal{P}(S) \text{ is the set of all subsets of } S.
\]

\[S = \{a, b, c, d\} \]

\[
\mathcal{P}(S) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\} \}
\]
Another way to count # subsets (not list them):

To construct a subset of \{a,b,c,d\}...

For each elt, I need to decide whether to include it or not.

(Ex: 4 Nos: \(\emptyset\); YNNY \(\rightarrow\) \{a,d\})

Four Y/N questions \(\Rightarrow\) Total possibilities = \(2^4 = 16\)

In gen'l for finite \(S\), \(|P(S)| = 2^{|S|}\)

Thms \(\bullet\) \(|S| < |P(S)|\)

\(\bullet\) \(|P(\mathbb{N})| = |\mathbb{R}|\)

Corollary 3 infinite “chain” of larger and larger \(\infty\)'s:

\(|\mathbb{N}| < |P(\mathbb{N})| < |P(P(\mathbb{N}))| < \ldots\)
A few words concerning §2.5, which covers Axioms of Set Thy.

Math majors are encouraged to read this section, but it's not officially part of the course!

It has the basic Axioms we use to build up set theory and modern mathematics - and possible shortcomings!

(... paradoxes!)