Recall/Announcements.

HW posted later today

No quiz this week!

Wednesday: Work through whichever HW probs are trickiest - then fun stuff.

* We'll skip to Chapter 8 (Series) today, then retreat to Chapter 5 in December.
Cauchy Sequences

So far we've described convergence as els of a sequence (eventually) bunching up next to a limit.

\[
\text{Def: A seq } (s_n) \text{ of real #'s is a Cauchy Sequence if } \forall \varepsilon > 0 \exists N \text{ s.t. } n, m > N \Rightarrow |s_n - s_m| < \varepsilon
\]

i.e. eventually the #'s bunch up together
<table>
<thead>
<tr>
<th>2014 Fields Medalists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artur Avila</td>
</tr>
<tr>
<td>Manjul Bhargava</td>
</tr>
<tr>
<td>Martin Hairer</td>
</tr>
<tr>
<td>Maryam Mirzakhani</td>
</tr>
</tbody>
</table>
Cauchy: $\forall \varepsilon > 0 \ \exists \ N \ s.t. \ n, m > N \Rightarrow |S_n - S_m| < \varepsilon$

$\text{Ex } S_n = \frac{(-1)^n}{n}$

Then $n, m > N$ (so both $\frac{1}{n}, \frac{1}{m} < \frac{3}{2}$) \Rightarrow

$|S_n - S_m| \leq |S_n| + |S_m| = \left| \frac{(-1)^n}{n} \right| + \left| \frac{(-1)^m}{m} \right| = \frac{1}{n} + \frac{1}{m} < \varepsilon$
Cauchy: \(\forall \varepsilon > 0 \ \exists N \text{ s.t. } n, m > N \Rightarrow |s_n - s_m| < \varepsilon \)

\[t_n = (-1)^n = \begin{cases} -1, & n \text{ odd} \\ 1, & n \text{ even} \end{cases} \]

This is not a Cauchy sequence. We can't force the #s to bunch up as needed in def.

Not Cauchy: \(\exists \varepsilon > 0 \text{ s.t. } \forall N, \exists n, m > N \text{ and } |s_n - s_m| \geq \varepsilon \).

Say \(\varepsilon = 1 \). For any \(N \), we can always find \(n, m > N \) with \(n \) odd, \(m \) even

\[|s_n - s_m| = |(-1)^n - 1| = |-2| = 2 > \varepsilon. \]
Cauchy: \(\forall \varepsilon > 0 \ \exists N \text{ s.t. } n, m > N \implies |S_n - S_m| < \varepsilon \)

Why do we care?

Thm (\(S_n \)) converges \(\iff \) (\(S_n \)) Cauchy

Pf \(\leq \) not in this course.

\(\implies \) Suppose \(S_n \to s \), let \(\varepsilon > 0 \) be given.

Must show \(\exists N \text{ s.t. } n, m > N \implies |S_n - S_m| < \varepsilon \).

We know \(\exists N \text{ s.t. } n > N \implies |S_n - s| < \varepsilon/2 \).

Then \(n, m > N \) gives

\[
|S_n - S_m| = |S_n - S - S_m + S| = |S_n - S - (S_m - S)|
\]

\[
\leq |S_n - s| + |S_m - s| < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]