In this problem you will solve Problem 52 from Chapter 1, which asks you to find a specific pair of points which satisfy the conditions in part (iii) of Theorem 38. You should read that problem (and review the theorem) before continuing.

This lab problem shouldn’t take too long. It’s designed to help you continue to get more accustomed to GeoGebra. It also shows you a few techniques which will seem strange – like defining line segments which are on top of a line – but can be very powerful when you want to label one particular distance in a diagram.

GeoGebra Construction

Make sure you have the latest version of GeoGebra, because you’ll name a point \(X \); in earlier version of GeoGebra \(X \) was reserved for a variable name.

1. Open a new GeoGebra window. Go to the View menu and turn the Grid on and the Axes off.
2. To create the angle, type \(\text{Ray}[(0,0),(1,0)] \) and \(\text{Ray}[(0,0),(0,1)] \) in the Input field at the bottom of the window. (You could also use the Ray tool and the mouse, but it would create points when you click in the drawing pad, and make the diagram more cluttered.) You need to type those commands exactly as shown; don’t change the square brackets or round parentheses.
3. Type \(Y = (2,2) \) in the input field to define the point in the interior of the angle.
4. Click on the Point tool with your mouse and click somewhere on the vertical ray. Rename this point \(Z \) to match the problem text. Make sure the point \(Z \) is higher than \(Y \) or you’ll have problems with the next step. (If you made it too low, use the Selection tool to drag \(Z \) higher.)
5. Next you’ll create the point \(X \) on the other ray. This takes a little work because you want to make sure \(Y \) is on the segment \(XZ \). The simplest way to do this is to choose the Line tool and make a line through \(Z \) and \(Y \); then use the Intersection tool to mark the intersection of this line with the horizontal ray. Finally, rename this point \(X \) to match the problem text.
6. You want \(|YX| = 2 \cdot |YZ| \). There are lots of ways to have GeoGebra display those distances. Here’s one: choose the Segment tool and create the line segments \(YZ \) and \(YX \). In the Algebra window on the left it will show the two segments –named \(d \) and \(e \) for me, when I did this lab – and their lengths.
7. Now it’s time to clean things up a bit. Go to Properties, under the Edit menu. First go to your line, and uncheck “Show Object” since we don’t need to see the line at all. For your rays (probably named \(a \) and \(b \)) uncheck “Show Label,” since don’t need to see their names. Finally, for your two segments leave “Show Label” checked, but change the label from “Name” to “Value.” Now GeoGebra displays the lengths of these segments on your picture.
8. If you slide \(Z \) up and down, you can now gauge when \(|YX| \) is twice \(|YZ| \). But eyeballing can be inaccurate. To have GeoGebra show you the exact ratios of these segment lengths, type \(\text{ratio} = e / d \) in the Input field. (Replace \(e \) and \(d \) with the names of your segments if they’re different.) Now you can look over in the Input field and see the exact ratio between the lengths as you slide \(Z \) up and down using the selection tool.

To receive credit for this assignment, send me an email with two screenshots of your drawing pad. The first should show the points \(X \) and \(Z \) which solve the Problem 52. The second should show the result after moving \(Z \) elsewhere, to prove that you made a dynamic construction and didn’t just draw a picture of the solution. The email is due by midnight on Friday, 10/1/10.