Ru-Yu Lai
Address:
School of Mathematics
University of Minnesota-Twin
Cities
206
Church St. SE
Minneapolis, MN 55455
Office: 229
Vincent Hall
Email:
rylai [at] umn.edu
About me
I am an assistant professor in the School of
Mathematics at the University of Minnesota. I obtained my PhD
from the Department of Mathematics at the University of
Washington under the supervision of professor Gunther Uhlmann.
My research interests are mainly on inverse problems and
partial differential equations. My detailed CV can be found here .
Publications
Global uniqueness for the fractional semilinear Schrödinger equation. (with Y.-H. Lin),
Preprint available at arXiv:1710.07404 (2017).
Quench detection on a superconducting radio-frequency cavity. (with D. Spirn),
Preprint available at arXiv:1710.04763 (2017).
Nonparaxial near-nondiffracting accelerating optical beams. (with T. Zhou),
Communications in Mathematical Physics. (DOI) 10.1007/s00220-017-2838-5 (2017).
An inverse problem from condense matter physics. (with R. Shankar, D. Spirn and G. Uhlmann),
Accepted by Inverse problems. Preprint available at arXiv:1606.07352 (2017).
Applications of CGO solutions on coupled-physics inverse problems.
(with I. Kocyigit, L. Qiu, Y. Yang and T. Zhou),
Accepted by Inverse problems and imaging. Preprint available at arXiv:1512.06695 (2016).
Increasing stability for the conductivity and
attenuation coefficients. (with V. Isakov and J.-N.
Wang), SIAM J. Math. Anal. , 48(1), 569-594 (2016).
Inverse boundary value problem for the Stokes
and the Navier-Stokes equations in the plane. (with
G. Uhlmann and J.-N. Wang), Arch. Rational Mech. Anal. ,
(DOI) 10.1007/s00205-014-0794-1 (2014).
Uniqueness and stability of Lamé parameters in
elastography. Journal of Spectral Theory ,
no. 4, 841-877 (2014).
Stability estimates for the inverse boundary
value problem by partial Cauchy data. Math. Meth. Appl. Sci. ,
38(8), 1568-1581 (2015).
Increasing stability for the diffusion
equation. Inverse Problems , 30, 075010
(2014).
Global uniqueness for an inverse problem for
the magnetic Schrödinger operator. Inverse
Problems and Imaging , 5, 59-74 (2011).
Teaching
Spring 2018, Math
2374 Lecture 020
Fall 2017, Math
2374 Lecture 010
Spring 2017, Math
2374 Lecture 010
Fall 2016, Math
2374 Lecture 010 and 020
Fall 2015, Math
1271 Lecture 030 and 050
Upcoming Travels
Last update: 2/18/2018