§ 4.1

Critical number: \(f'(c) = 0 \) or \(f'(c) \) does not exist.

Closed Interval method: (Find absolute max / min.)

1. \(f \) is continuous on \([a, b]\).
2. Find critical numbers in \((a, b)\).
3. Evaluate \(f \) at critical numbers.
4. Evaluate \(f \) at endpoints.
5. Compare those values in 3, 4.

§ 4.2

Mean Value Theorem:

1. \(f \) is continuous on \([a, b]\).
2. \(f \) is differentiable on \((a, b)\).

Then there is a number \(c \) in \((a, b)\) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

§ 4.3

Increasing / decreasing Test.

\(f'(x) > 0 \) on an interval, then \(f \) is increasing on that interval.

\(f'(x) < 0 \), then \(f \) is decreasing.
Consider EX 1. We discussed last time.

\[f(x) = 4x^3 + 3x^2 - 6x + 1 \]

has critical numbers \(x = \frac{1}{2}, -1 \).

Q: How do we know if \(f \) has local max or min at \(\frac{1}{2}, -1 \)?

\[
\begin{array}{ccc}
\text{\(f \) is increasing} & \text{\(f \) is decreasing} & \text{\(f \) is increasing} \\
f' > 0 & f' < 0 & f' > 0 \\
-1 & \frac{1}{2} & 1
\end{array}
\]

Ans: \(f(-1) \) is local max value since \(f \) changes from positive to negative.

\(f \left(\frac{1}{2} \right) \) is min value since \(f \) changes from negative to positive.
Recall that if \(f \) has local max or min at \(c \), then \(c \) is a critical number of \(f \). (Fermat's Theorem)

But not every critical number gives rise to a max or min.

The following test tells us when \(f \) has a local max or min at a critical number \(c \).

The first derivative test:

If \(c \) is a critical number of a continuous function \(f \):

1. \(f'(x) \) changes from positive to negative at \(c \), then \(f(c) \) is a local maximum value.

2. \(f'(x) \) changes from negative to positive at \(c \), then \(f(c) \) is a local minimum value.

3. \(f' \) does not change sign at \(c \), then \(f \) has no local maximum or minimum at \(c \).

Ex: See Fig. 2.
What does f'' can tell us about f?

(a) Concave upward

(b) Concave downward.

Concavity Test (an interval)

1. $f'' > 0$ for all $x \in I$, then the graph of f is concave upward on I.

2. $f'' < 0$ for all $x \in I$, then the graph of f is concave downward on I.

Observation:

In Fig. 3 (a), f' is increasing, thus $f'' > 0$.

In Fig. 3 (b), f' is decreasing, thus $f'' < 0$.
An inflection Point.

A point on the graph of \(f \) is called an inflection point if \(f \) is continuous there and turns from concave upward to concave downward, or vice versa.

\(y = x^3 \)

\((0,0) \) is an inflection point.
EX 2: Let \(f(x) = -x^4 - \frac{8}{3} x^3 + 6x^2 \).

Find the intervals on which \(f(x) \) is concave upward and concave downward.

Ans:
\[
\begin{align*}
f'(x) &= -4x^3 - 8x^2 + 12x \\
f''(x) &= -12x^2 - 16x + 12 \\
 &= -4(3x^2 + 4x - 3)
\end{align*}
\]

To find intervals on which \(f'' > 0 \) and \(f'' < 0 \).

\[
3x^2 + 4x - 3 = 0
\]
\[
x = \frac{-4 \pm \sqrt{16 + 36}}{6} = \frac{-4 \pm \sqrt{52}}{6} = \frac{-4 \pm 2\sqrt{13}}{6} = \frac{-2 \pm \sqrt{13}}{3}
\]

\[
\Rightarrow C_1 = \frac{-2 - \sqrt{13}}{3}, \quad C_2 = \frac{-2 + \sqrt{13}}{3}
\]

<table>
<thead>
<tr>
<th>(f'')</th>
<th>(f'' > 0)</th>
<th>(f'' < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\infty, C_1)</td>
<td>(C_1, C_2)</td>
<td>(C_2, \infty)</td>
</tr>
</tbody>
</table>

\[
f''(1) = -12 - 16 + 12 = -16 < 0 \Rightarrow (C_2, \infty) \text{ concave down}
\]
\[
f''(0) = 12 > 0 \Rightarrow (C_1, C_2) \text{ concave up}
\]
\[
f''(-2) = -4 < 0 \Rightarrow (-\infty, C_1) \text{ concave down}
\]

\[4.3-6]
The second derivative test:

- f'' is continuous near c.

1. If $f'(c) = 0$ and $f''(c) > 0$, then f has local min at c.

2. If $f'(c) = 0$, and $f''(c) < 0$, then f has local max at c.
EX3: \(f(x) = -x^4 - \frac{8}{3}x^3 + 6x^2. \) Use the second derivative to find local max/min.

Ans:

\[
f' = -4x^3 - 8x^2 + 12x
\]

\[
= -4x(x^2 + 2x - 3)
\]

\[
= -4x(x - 1)(x + 3)
\]

\(x = 0, 1, -3 \) critical numbers.

Since \(f'' \) is polynomial, \(f'' \) is continuous on \((\infty, \infty)\).

Use the second derivative test:

\[
f''(-3) = -4(3.9 + (-12) - 3) = -48 < 0.
\]

\(\Rightarrow \) \(f \) has local max at \(x = -3 \).

\[
f''(0) = 12 > 0.
\]

\(\Rightarrow \) \(f \) has local min at \(x = 0 \).

\[
f''(1) = -16 < 0.
\]

\(\Rightarrow \) \(f \) has local max at \(x = 1 \).

\[
\text{You also can use the first derivative test to conclude the same result.}
\]