(F09, #7) Related Rates.

Set up an equation.
Differentiate both sides with respect to t. (time)

\[V = \pi r^2 h \]
\[\frac{dV}{dt} = \pi r^2 \frac{dh}{dt} \]

Given:
\[h = 20 \text{ cm} \]
\[\frac{dy}{dt} = 2 \text{ cm/s} \]

Differentiate

\[\frac{dV}{dt} = 2 \pi r \frac{dy}{dt} \]

\[= 2 \cdot 2 \pi \cdot 2 \cdot 20 \]
\[= 160 \pi \text{ cm}^3/\text{s} \]

Ans:

\[\text{volume} \]
\[\sqrt{V} = r^2 \pi h \]

\[\text{cylinder} \]
Ans: \[y = x (1-x^2) \]

\[\frac{dy}{dt} = \frac{dx}{dt} (1-x^2) + x (-2x) \frac{dx}{dt} \]

\[4 = \frac{dx}{dt} \left(1-1^2 \right) + (-2) \frac{dx}{dt} \]

\[\frac{dx}{dt} = -2 \text{ (m/s)} \]
1. (F08, 12) Find an absolute maximum of the function \(f(x) = 2 \ln x + 3x - x^2 \) on \(x > 0 \).

2. (F08, 20, 21) Find the intervals where \(f(x) = (x - 3)^2(x + 3) \) is increasing and where it is decreasing. Indicate the points of a local maximum and local minimum of \(f \). Find the intervals where \(f \) is concave up and where it is concave down. Indicate the inflection points of \(f \).

3. (F09, 10) Let \(f(x) = x^3 - 3x^2 - 9x \) with domain \(-\infty < x < \infty\). Does \(f \) have any absolute max/min or local max/min?

4. (F09, 11) Let \(f(x) = 5x^4 - x^5 \) with domain \(-\infty < x < \infty\). Find the intervals where \(f \) is concave up and concave down.

5. (F09, 17) Let \(x_1 \) be an approximation of the root of \(e^{-x} - x = 0 \). Use Newton’s method to set up the expression for the \(x_2 \), in terms of \(x_1 \).

6. (F08, 11) Find \(f'(x) \) if \(f(x) = \int_{\ln x}^{1} ye^y dy \).

7. (F08, 18) Find \(F(x) \), if \(F(0) = 0 \) and \(F'(x) = \frac{x}{3 + 4x^2} \).

8. (F09, 14) Compute
\[
\int_{0}^{\ln x} \sin(e^{2t})e^{2t}dt
\]

9. (F09, 19) Compute
\[
\lim_{n \to \infty} \frac{\pi}{n} \sum_{i=1}^{n} \sin \left(\frac{\pi i}{n} \right)
\]

10. (F09, 21) Find the area enclosed by the curve \(y = |x^3 - x^2 - 2x| \) and the \(x \)-axis, between the lines \(x = -2 \) and \(x = 2 \).

11. (F07, 20) Find the area of the rectangle having the largest area that can be inscribed in a semicircle of radius \(R \).
Using critical numbers.

\[f(x) = \frac{2}{x} + 3 - 2x, \quad x > 0 \]

\[= \frac{2 + 3x - 2x^2}{x} = \frac{-(2x+1)(x-2)}{x}, \quad x > 0 \]

Critical numbers:

\[+1, -\frac{1}{2}, 0, 2 \]

\[f(2) = 2\ln 2 + 6 - 4 \]

\[= 2\ln 2 + 2 \]
\[f'(x) = 2(x-3)(x+3) + (x-3)^2 = (x-3)(2x+6+x-3) = (x-3)(3x+3) = 0 \]
\[x = 3, \ -1 \]

\[\begin{array}{c|c|c|c}
& -1 & 3 & \\
\hline
f' & + & + & \\
\end{array} \]

\[f''(x) = 3x+3 + (x-3) \cdot 3 = 6x - 6 = 0 \]
\[x = 1 \]

\[\begin{array}{c|c|c|c}
& - & + & \\
\hline
f'' & - & + & \\
\end{array} \]

\(f \) is increasing on \((3,\infty), (-\infty, -1)\)
\(f \) is decreasing on \((-1, 3)\)
\(f \) is concave up on \((1, \infty)\)
\(f \) is concave down on \((-\infty, 1)\)

\(f' \) changes from positive to negative, \(f(-1) \) local max.
\(f' \) changes from negative to positive, \(f(3) \) local min.
\(f'' \) changes from negative to positive, \(x=1 \) inflection pt.
\[
\begin{align*}
\frac{d}{dx} f(x) &= 3x^2 - 6x - 9 \\
&= 3(x^2 - 2x - 3) \\
&= 3(x - 3)(x + 1) = 0 \\

+ & & - & & + \\
-1 & & 1 & & 3
\end{align*}
\]

\[
f''(x) = 6x - 6 = 0 \implies x = 1
\]

\(f\) concave up if \(x > 1\)

\(f\) concave down if \(x < 1\)

\(\implies f\) has local max at \(x = -1\)

\(\min\) at \(x = 3\)

Since \(\lim_{x \to -\infty} f(x) = +\infty\), \(f(x)\) has no

\(\lim_{x \to -\infty} f(x) = -\infty\) \(\quad\) \(\text{global max/min}\).
\(f'(x) > 0 \iff f \text{ is concave up} \)
\(f''(x) < 0 \iff f \text{ is concave down} \)

Ans:

\[
\begin{align*}
 f(x) &= 20x^3 - 5x^4 \\
 f''(x) &= 60x^2 - 20x^3 \\
 &= 20x^2(3 - x)
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
0 & + & 3 & - \\
\hline
\end{array}
\]

\(f \) is concave up on \((0, 3)\)
\(f \) is concave down on \((-\infty, 0) \cup (3, \infty)\)
(F09, #17) Newton's Method.

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

\[f(x) = e^{-x} - x \]

\[f'(x) = -e^{-x} - 1 \]

\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \]

\[= x_1 - \frac{e^{-x_1} - x_1}{-e^{-x_1} - 1} \]

\[\# \]
\[(F08, \#11) \quad FTC, \; part \; 1.\]

\[f'(x) = \frac{d}{dx} \left(\int_{\ln x}^{y} e^y \, dy \right) \]
\[= - \frac{1}{x} \ln x \cdot e^{\ln x} = - \frac{1}{x} \ln x \cdot x \]
\[= - \ln x.\]

\[(F08, \#18) \quad \text{Antiderivative and u-substitution.}\]

\[F(x) = \int \frac{x}{3 + 4x^2} \, dx = \int \frac{1}{u} \cdot \frac{du}{8} \quad u = 3 + 4x^2 \]
\[= \frac{1}{8} \ln |u| + C \quad du = 8x \, dx\]
\[= \frac{1}{8} \ln |3 + 4x^2| + C.\]

\[F(0) = 0 \]
\[0 = \frac{1}{8} \ln |3| + C \quad \Rightarrow \quad C = - \frac{1}{8} \ln 3.\]

\[\therefore \quad F(x) = \frac{1}{8} \ln |3 + 4x^2| - \frac{1}{8} \ln 3.\]
\(u = \text{e}^{2t} \)
\(du = 2\text{e}^{2t} \, dt \)

\[
\int \text{e}^{2u} \sin(u) \, \frac{du}{2} = \frac{1}{2} \left(-\cos(u) \right) \bigg|_1^\text{e}^{2u} \\
= -\frac{1}{2} \left[\cos\left(\text{e}^{2u}\right) - \cos(1) \right] \text{e}^{2u} \\
= -\frac{1}{2} \left(\cos\left(\text{e}^{2u}\right) - \cos(1) \right) \text{e}^{2u} \\
= \frac{1}{2} \cdot x^2
\]