1. Compute the indicated derivatives of the function \(y = f(x) \). It is not necessary to simplify your answer.

(a) (4 points) \(f'(x) \) where

\[
f(x) = e^{1 - \cos(2x)}
\]

\[
f' = e^{1 - \cos(2x)} \cdot \left(-2 \sin(2x) \right)
\]

(b) \(f'(x) \) where

\[
y = f(x) = (x + 1)^x
\]

\[
\ln y = x \ln(x + 1)
\]

\[
\frac{y'}{y} = \frac{\ln(x + 1)}{x + 1} + x \frac{1}{x + 1}
\]

\[
f' = (x + 1)^x \left(\ln(x + 1) + \frac{x}{x + 1} \right)
\]

(c) \(f'(x) \) where

\[
f(x) = \arctan(2x - 3)
\]

\[
\frac{d}{dx} (2x - 3)
\]

\[
= \frac{2}{1 + (2x - 3)^2}
\]
(d) \[f^{(3)}(x) \] where \[f(x) = \ln(1 - x) \]

\[
\begin{align*}
 f' &= \frac{-1}{1-x} = (x-1)^{-1} \\
 f'' &= -(x-1)^{-2} \\
 f''' &= 2(x-1)^{-3}
\end{align*}
\]
2. Compute the limit

\[
\lim_{{x \to 0}} \frac{x^4}{\sin(x) \sin(2x) \sin(4x) \sin(8x)}
\]

Or

\[
\lim_{{x \to 0}} \frac{x - \sin x}{x(1 - \cos x)}
\]

\[
\lim_{{x \to 0}} \left(\frac{x}{\sin x} \right) \left(\frac{2x}{\sin 2x} - \frac{1}{2} \right) \left(\frac{4x}{\sin 4x} - \frac{1}{4} \right) \left(\frac{8x}{\sin 8x} - \frac{1}{8} \right)
\]

\[
= 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8}
\]

\[
= \frac{1}{64}
\]

\[
\lim_{{x \to 0}} \frac{x - \sin x}{x(1 - \cos x)}
\]

\[
\lim_{{x \to 0}} \frac{1 - \cos x}{(-\cos x) + x \sin x}
\]

\[
\lim_{{x \to 0}} \frac{\sin x}{\sin x + \sin x + x \cos x}
\]

\[
\lim_{{x \to 0}} \frac{\cos x}{\cos x + \cos x + \cos x + (-x \sin x)}
\]

\[
= \frac{1}{1 + 1 + 1 + 0} = \frac{1}{3}
\]
3. Let \(y = f(x) = x^4 - 2x^2 + 9 \)

with its natural domain. Determine where \(f(x) \) is increasing and where it is decreasing. Find all local maxima and minima. State the name of a test" in your reasoning.

Also find the interval where \(f \) is concave up and where \(f \) is concave down.

Is any of these local maxima or minima an absolute maximum or absolute minimum?

\[
f(x) = 4x^3 - 4x
\]

\[
= 4x(x^2 - 1) = 0
\]

\(x = 0, \pm 1 \) are critical numbers.

\[
\begin{array}{c|c|c|c|c}
 x & f'(x) & & & f''(x) \\
\hline
-1 & + & - & + & \\
0 & - & + & - & \\
1 & + & - & + & \\
\end{array}
\]

1) \(f \) is increasing on \((1, \infty), (-1, 0)\).

2) \(f \) is decreasing in \((-\infty, -1), (0, 1)\).

By first derivative test, \(f \) changes from negative to positive, \(f(-1), f(1) \) are local minimum values

\(f \) changes from positive to negative, then \(f(0) \) is a local maximum value.

3) \(f''(x) = 12x^2 - 4 \Rightarrow x = \pm \frac{1}{\sqrt{3}} \).

\(f'' > 0 \Rightarrow x > \frac{1}{\sqrt{3}} \) concave up.

\(f'' < 0 \Rightarrow -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \) concave down.

4) Absolute minimum values are \(f(1) \) and \(f(-1) \).
4. Let \(y \) be a function of \(x \) such that \(y^2 + 3y + x^3 = -1 \) and \(y = -2 \) when \(x = 1 \) and the derivatives \(y' \) and \(y'' \) exist at \(x = 1 \).

(a) \(\text{Compute } y' \text{ when } x = 1 \)

\[
2yy' + 3y + 3x^2 = 0.
\]
\[
y' = \frac{-3x^2}{2y+3}.
\]
\[
y' = \frac{-3}{-4+3} = 3.
\]

(b) \(\text{Compute } y'' \text{ when } x = 1 \)

\[
y' = \frac{-3x^2}{2y+3}.
\]
\[
y'' = \frac{-6x(2y+3) - 2y(-3x^2)}{(2y+3)^2} = \frac{-12xy - 18x + 6x^2 y'}{(2y+3)^2}.
\]
\[
y'' = \frac{-12xy - 18x + 6x^2 \left(\frac{-3x^2}{2y+3} \right)}{(2y+3)^2}.
\]
5. Verify that the function $f(x) = -x^3 + 5$ satisfies the hypotheses of the Mean Value Theorem on the interval $[-1, 0]$. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

1. $f(x)$ is polynomial, so f is continuous on $[-1, 0]$ and differentiable on $(-1, 0)$.

2. By Mean Value Theorem,

$$f(0) - f(-1) = f'(c) (0 - (-1))$$

$$5 - 6 = f'(c)$$

$$f'(c) = -1$$

$$f'(x) = -3x^2$$, so

$$-3c^2 = -1$$

$$c^2 = \frac{1}{3}$$

$$c = \pm \frac{1}{\sqrt{3}}$$ (since $\sqrt{3}$ is not in interval $(-1, 0)$)

So, $c = -\frac{1}{\sqrt{3}}$. **}$
6.

Spherical Volume. The volume V of a spherical cancer tumor is given by $V = \frac{\pi x^3}{6}$, where x is the diameter of the tumor. A physician estimates that the diameter is growing at the rate of 4 millimeters per day, at a time when the diameter is already 10 millimeters. How fast is the volume of the tumor changing at that time? (Simplify your answer)

\[
\frac{dx}{dt} = 0.4
\]

\[
\frac{dV}{dt} = \frac{\pi}{6} 3x^2 \frac{dx}{dt}
\]

\[
= \frac{\pi}{2} 100 (0.4)
\]

\[
= 20\pi \text{ millimeter/day}
\]
A soccer ball is made of leather \(\frac{1}{8} \) inch thick and its inner diameter is 9 inches. Use differentials to estimate the volume of its leather shell.

\[r \text{ : radius of the ball} \quad r = 4.5 \text{ inch} \]

\[V = \text{volume} \quad V = \frac{4}{3} \pi r^3 \]

\[dv = 4\pi r^2 \, dr \]

\[= 4\pi \left(4.5\right)^2 \frac{1}{8} \]

\[= 4\pi \frac{81}{4} \cdot \frac{1}{8} = \frac{81}{8} \pi \quad \text{(in}^3) \]

Use differentials to estimate \(\sqrt[3]{26} \).

\[f(x) = \sqrt[3]{x} \quad f'(x) = \frac{1}{3} x^{-\frac{2}{3}} \]

\[f(26) - f(27) \approx f'(27)(26 - 27) \]

\[f(26) \approx f(27) + f'(27)(-1) \]

\[\approx 3 + \left(-\frac{1}{27}\right) = \frac{80}{27} \]

\[x \]