Chapter 1. Linear Algebraic Systems Lecture 1: 1.1 The Solution of Linear Systems

- Today we will learn how to solve a linear system.

For example:

$$
\begin{array}{r}
5 x+7 y+3 z=2 \\
2 x+y+6 z=1 \\
x+10 y+3 z=5
\end{array}
$$

(3 equations with 3 unknowns x, y, z), or

$$
\begin{array}{r}
w+5 x+7 y+3 z=2 \\
2 w+2 x+y+6 z=1 \\
3 w+x+10 y+3 z=5 \\
2 w+9 x+4 y+2 z=7
\end{array}
$$

(4 equations with 4 unknowns w, x, y, z).

- Given such a system of equations, we want to find the variables x, y, z, \ldots that satisfy all equations simultaneously.
- We will learn Gaussian Elimination, that is to reduce the original system to a much simpler system that still has the same solution.

Example: Find solution of linear system:

$$
\begin{align*}
x-2 y+z & =3 \\
2 x-y-2 z & =6 \tag{2}\\
3 x-7 y+4 z & =10 \tag{3}\\
2 x-y-2 z & =6 \\
-) & \text { (2) } \\
2 x-4 y+2 z & =6 \\
\hline 3 y-4 z & =0 \quad \text { New (2) }
\end{align*}
$$

Equ. (2) - 2 Equ.(1)

New system:

$$
\begin{aligned}
& \left\{\begin{aligned}
x-2 y+z & =3 \\
3 y-4 z & =0 \\
3 x-7 y+4 z & =10
\end{aligned}\right. \\
& \left\{\begin{array}{r}
x-2 y+z \\
3 y-4 z
\end{array}=00\right. \\
& -y+z=1
\end{aligned}
$$

has the same solution as original system.
(3) -3 (1)

Now we have eliminated " x " from (2), (3). $3-8+3=-2$
(3) $+\frac{1}{3}(2)$

$$
\begin{aligned}
& \text { (2) }\left\{\begin{aligned}
& x-2 y+z=3 \text { Plugin } z, y, x=3+2 y-z \\
& 3 y-4 z=0 \text { Plug in } z=-3, \quad y=\frac{4}{3} z=-4 . \\
&-\frac{1}{3} z=1 \\
&=y-\frac{4}{3} z=0 \Rightarrow z=-3
\end{aligned}\right. \\
& \begin{array}{ll}
y+y+z=1
\end{array}
\end{aligned}
$$

$$
\sqrt{\frac{1}{3}}(2)=y-\frac{4}{3} z=0
$$

Remark (RK.):" This process is called "Gaussian Elimination'.
(2)

$$
\left\{\begin{array}{c|ccc}
\text { (1) } & \text { Use (1), to eliminate } 1 \text { st variable from } \tag{2}\\
\text { (2) } \\
\vdots & \downarrow \text { Use (2), "1 } & \text { and " " } \\
\text { (1) } & &
\end{array}\right.
$$

Gaussian ${ }^{\text {get }} A$ upper
$\xrightarrow[\text { Elimination }]{\text { Gaussian }} A_{\wedge}^{A}$ triangular system.
We solve it from bottom up, called "back substitution".

1.2 Matrices and Vectors and Basic Operations

- A matrix is simply a rectangle array of numbers, such as,

$$
\left[\begin{array}{ccc}
1 & 0.7 & 10 \\
\pi & 6 & 0
\end{array}\right]_{2 \times 3},\left[\begin{array}{cc}
\cos (1) & 1 \\
4 & 6 \\
-10 & e^{2}
\end{array}\right]_{3 \times 2}
$$

The 1st matrix above is a 2×3 matrix and 2 nd matrix above is a 3×2 matrix.

- Generally, an $m \times n$ matrix A is a two-dimensional array of $m \cdot n$ numbers:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

where m is the number of rows and n is the number of columns. The element a(2) $1 \leq i \leq m, 1 \leq j \leq n$, is called the entry of A.

- A column vector is a matrix where $n=1$:

$$
\mathbf{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)
$$

- A row vector is a matrix where $m=1$:

$$
\mathbf{w}=\left(w_{1} w_{2} \cdots w_{n}\right)
$$

§ Three basic operations:

1. Matrix addition: the same size.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
\end{aligned}
$$

2. Scalar multiplication: If c is a number, we can multiply a matrix by c :

$$
\begin{aligned}
& c \times\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
c \cdot a_{11} & c \cdot a_{12} & \cdots & c \cdot a_{1 n} \\
c \cdot a_{21} & c \cdot a_{22} & \cdots & c \cdot a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c \cdot a_{m 1} & c \cdot a_{m 2} & \cdots & c \cdot a_{m n}
\end{array}\right) \\
& H\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
7 & 14 & 21 \\
28 & 35 & 42
\end{array}\right)_{2 \times 3}
\end{aligned}
$$

3. Matrix multiplication:

$$
\left(v_{1} \cdots v_{p}\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{p}
\end{array}\right)_{\underline{p} \times 1}=v_{1} w_{1}+\underline{v_{2} w_{2}}+\cdots+v_{\underline{p}} w_{\underline{p}}\right.
$$

Generally, if $A=\left(a_{i j}\right)$ is $m \times \underline{\underline{n}}$ matrix and $B=\left(b_{i j}\right)$ is $\underline{\underline{n}} \times p$ matrix, then their product $C=A B$ is $m \times p$ matrix and has entries:

$$
c_{i j}=\left(i^{\text {th }} \text { row of } A\right) \times\left(j^{\text {th }} \text { column of } B\right)
$$

* the number of columnsof, $A=$ the number of rows of B.

Remark:

- Matrix multiplication is associative: $(A B) C=A(B C)$
- Not commutative: in general, $A B \neq B A$.

Example: $A=(1,2,3)$ and

$$
B=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
$$

Compute $A B$ and $B A$.

$$
\begin{aligned}
& A B=\left(\begin{array}{ll}
1 & 23
\end{array}\right)\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=(4+10+18)=(32) . \\
& B A=\left(\begin{array}{c}
4 \\
5 \\
6
\end{array}\right)\left(\begin{array}{ll}
1 & 23
\end{array}\right)=\left(\begin{array}{ccc}
4 & 8 & 12 \\
5 & 10 & 15 \\
6 & 12 & 18
\end{array}\right)_{3 \times 3}
\end{aligned}
$$

\S Vectors and matrices provide a convenient notation for linear systems.

- For example, the linear system

$$
\rightarrow \begin{aligned}
5 x-4 y+3 z & =79 \\
4 x-5 y+3 z & =17 \\
x-y-2 z & =4
\end{aligned}
$$

is equivalent to the equation:

$$
\left(\begin{array}{rrr}
5 & -4 & 3 \\
4 & -5 & 3 \\
1 & -1 & -2
\end{array}\right)\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
19 \\
17 \\
4
\end{array}\right)\right.
$$

- In more compact notation, we can write:

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
A=\left(\begin{array}{rrr}
5 & -4 & 3 \\
4 & -5 & 3 \\
1 & -1 & -2
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
19 \\
17 \\
4
\end{array}\right)
$$

§ Some special matrices we will see and utilize many times in this course.

- The n-by-n identity matrix, typically denoted I or I_{n}, defined by:

$$
I=I_{n}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)_{n \times n}
$$

In other words, I has 1's on the main diagonal, and the off-diagonal elements are 0 . It's easy to check that

$$
I_{n} A=A \text { and } B I_{n}=B
$$

for any matrix A with n rows and any matrix B with n columns.

- The m-by- n zero matrix, typically denoted O or $O_{m \times n}$, which has all zero entries. It's easy to check that

$$
O_{m \times n} A=O_{m \times k}
$$

for any n-by- k matrix A, and

$$
B O_{m \times n}=O_{k \times n}
$$

for any k-by- m matrix B.
§ Some useful notations:

- if $a_{1}, a_{2}, \ldots, a_{n}$ are n numbers, we will denote by $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ the following n-by- n matrix:

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)=\left(\begin{array}{cccccc}
a_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & a_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & a_{n}
\end{array}\right)
$$

In other words, $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ has a_{1}, \ldots, a_{n} on the main diagonal, and the off-diagonal elements are 0 .

- In this notation, $I_{n}=\operatorname{diag} \underbrace{(1, \ldots, 1)}_{n \text { times }}$
\S The augmented matrix for a linear system appends the right hand side as an extra column to the coefficient matrix.
- For example, the augmented matrix for the linear system

$$
\begin{array}{r}
x+2 y+2 z=2 \\
2 x+6 y=1 \\
4 x+4 z=0
\end{array}
$$

is the 3-by-4 matrix:

$$
\left(\begin{array}{llll}
1 & 2 & 2 & 2 \\
2 & 6 & 0 & 1 \\
4 & 0 & 4 & 0
\end{array}\right)
$$

- For clarity, this may also be written like this:

$$
\left(\begin{array}{lll|l}
1 & 2 & 2 & 2 \\
2 & 6 & 0 & 1 \\
4 & 0 & 4 & 0
\end{array}\right)
$$

- Gaussian elimination can be expressed entirely in terms of the augmented matrix.
- Also, the operations of Gaussian elimination can be used to update the augmented matrix.

Example:

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
1 & 2 & 2 & 2 \\
2 & 6 & 0 & 1 \\
4 & 0 & 4 & 0
\end{array}\right) \stackrel{\text { is identical }}{\sim}\left\{\begin{array}{lll}
t 0 \\
x+2 y+2 z & =2 & \text { - (1) } \\
2 x+6 y & =1 & -(2) \\
4 x+4 z & =0 & \text { - } 3
\end{array}\right. \\
& \left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
0 & 2 & -4 & -3 \\
0 & -8 & -4 & -8
\end{array}\right) \xrightarrow[\substack{\text { (3) }-20 \\
\text { (eliminate } \\
\text { in (2) } x^{\prime \prime} \text { (3) }}]{\left(\begin{array}{ll}
(2)
\end{array}\right.}\left\{\begin{array}{rl}
x+2 y+2 z & =2 \\
2 y-4 z & =-3 \\
-8 y-4 z & =-8
\end{array} .\right. \\
& \left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
0 & 2 & -4 & -3 \\
0 & 0 & -20 & -20
\end{array}\right) \xrightarrow[(2)+42]{(2, i m i n a t e}{ }^{\prime \prime} y \text { "in (3) } \quad\left\{\begin{aligned}
x+2 y+2 z & =2 \\
2 y-4 z & =-3 \\
-20 z & =-20
\end{aligned}\right.
\end{aligned}
$$

Using " back - substitution',

$$
z=1, \quad \text { (2) } \quad 2 y=-3+4 z=-3+4=1, y=1 / 2 .
$$

Plug $z=1, y=1 / 2$ into (1), $x=2-2 y-2 z$
Remark: Ans: $x=-1, y=1 / 2, z=1$

- Adding/subtracting a multiple of one row to/from another row is called an elementary row operation.
- Each elementary row operation is associated with an elementary matrix, defined by applying the elementary row operation to the identity matrix.

Example. The elementary matrix associated with adding 3 times the 3rd row to the 1st row is:

$$
E=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Multiplying a matrix A on the left by an elementary matrix E performs the associated row operation on A. For example, check that:

$$
\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{ccc}
a+3 g & b+3 h & c+3 i \\
d & e & f \\
g & h & i
\end{array}\right)
$$

