
Chapter 1. Linear Algebraic Systems

Lecture 1: 1.1 The Solution of Linear Systems

• Today we will learn how to solve a linear system.

For example:

5x + 7y + 3z = 2

2x + y + 6z = 1

x + 10y + 3z = 5

(3 equations with 3 unknowns x, y, z), or

w + 5x + 7y + 3z = 2

2w + 2x + y + 6z = 1

3w + x + 10y + 3z = 5

2w + 9x + 4y + 2z = 7

(4 equations with 4 unknowns w, x, y, z).

• Given such a system of equations, we want to find the variables x, y, z, ... that

satisfy all equations simultaneously.

• We will learn Gaussian Elimination, that is to reduce the original system

to a much simpler system that still has the same solution.
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Example: Find solution of linear system:

x− 2y + z = 3

2x− y − 2z = 6

3x− 7y + 4z = 10
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1.2 Matrices and Vectors and Basic Operations

• A matrix is simply a rectangle array of numbers, such as,

[
1 0.7 10

π 6 0

]
,

 cos(1) 1

4 6

−10 e2


The 1st matrix above is a 2×3 matrix and 2nd matrix above is a 3×2 matrix.

• Generally, an m× n matrix A is a two-dimensional array of m · n numbers:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn



where m is the number of rows and n is the number of columns. The element

aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, is called the entry of A.

• A column vector is a matrix where n = 1:

v =


v1
v2
...

vm


• A row vector is a matrix where m = 1:

w = (w1w2 · · · wn)
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§ Three basic operations:

1. Matrix addition:
a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 +


b11 b12 · · · b1n
b21 b22 · · · b2n
... ... . . . ...

bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

... ... . . . ...

am1 + bm1 am2 + bm2 · · · amn + bmn



2. Scalar multiplication: If c is a number, we can multiply a matrix by c:

c×


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 =


c · a11 c · a12 · · · c · a1n
c · a21 c · a22 · · · c · a2n

... ... . . . ...

c · am1 c · am2 · · · c · amn



3. Matrix multiplication:

(v1 · · · vp)

 w1
...

wp

 = v1w1 + v2w2 + · · · + vpwp
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Generally, if A = (aij) is m × n matrix and B = (bij) is n × p matrix, then

their product C = AB is m× p matrix and has entries:

cij = (ith row of A)× (jthcolumn of B)

Remark:

• Matrix multiplication is associative: (AB)C = A(BC)

• Not commutative: in general, AB 6= BA.
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Example: A = (1, 2, 3) and

B =

 4

5

6

 .

Compute AB and BA.

§Vectors and matrices provide a convenient notation for linear systems.

• For example, the linear system

5x− 4y + 3z = 19

4x− 5y + 3z = 17

x− y − 2z = 4

is equivalent to the equation: 5 −4 3

4 −5 3

1 −1 −2

 x

y

z

 =

 19

17

4


• In more compact notation, we can write:

Ax = b

where

A =

 5 −4 3

4 −5 3

1 −1 −2

 , x =

 x

y

z

 , b =

 19

17

4


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§ Some special matrices we will see and utilize many times in this course.

• The n-by-n identity matrix, typically denoted I or In, defined by:

I = In =



1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


n×n

In other words, I has 1’s on the main diagonal, and the off-diagonal elements

are 0. It’s easy to check that

InA = A and BIn = B

for any matrix A with n rows and any matrix B with n columns.

• The m-by-n zero matrix, typically denoted O or Om×n, which has all zero

entries. It’s easy to check that

Om×nA = Om×k

for any n-by-k matrix A, and

BOm×n = Ok×n

for any k-by-m matrix B.

§ Some useful notations:

• if a1, a2, . . . , an are n numbers, we will denote by diag(a1, . . . , an) the following

n-by-n matrix:

diag(a1, . . . , an) =



a1 0 0 · · · 0 0

0 a2 0 · · · 0 0

0 0 a3 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · an−1 0

0 0 0 · · · 0 an


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In other words, diag(a1, . . . , an) has a1, . . . , an on the main diagonal, and the

off-diagonal elements are 0.

• In this notation, In = diag (1, . . . , 1)︸ ︷︷ ︸
n times

§ The augmented matrix for a linear system appends the right hand side as

an extra column to the coefficient matrix.

• For example, the augmented matrix for the linear system

x + 2y + 2z = 2

2x + 6y = 1

4x + 4z = 0

is the 3-by-4 matrix:  1 2 2 2

2 6 0 1

4 0 4 0


• For clarity, this may also be written like this: 1 2 2 2

2 6 0 1

4 0 4 0


• Gaussian elimination can be expressed entirely in terms of the augmented ma-

trix.

• Also, the operations of Gaussian elimination can be used to update the aug-

mented matrix.
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Example:  1 2 2 2

2 6 0 1

4 0 4 0

 
x + 2y + 2z = 2

2x + 6y = 1

4x + 4z = 0

Remark:

• Adding/subtracting a multiple of one row to/from another row is called an

elementary row operation.

• Each elementary row operation is associated with an elementary matrix,

defined by applying the elementary row operation to the identity matrix.
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Example. The elementary matrix associated with adding 3 times the 3rd row

to the 1st row is:

E =

 1 0 3

0 1 0

0 0 1


• Multiplying a matrix A on the left by an elementary matrix E performs the

associated row operation on A. For example, check that: 1 0 3

0 1 0

0 0 1

×
 a b c

d e f

g h i

 =

 a + 3g b + 3h c + 3i

d e f

g h i


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