Lecture 10: Quick review from previous lecture

- Definition: A vector space is a set V equipped with two operations:
(1) (Addition) If $\mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v}+\mathbf{w} \in V$.
(2) (Scalar Multiplication) Multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c \mathbf{v} \in V$.

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all scalars $c, d \in \mathbb{R}$:
(a) Commutativity of Addition: $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$.
(b) Associativity of Addition: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
(c) Additive Identity: There is a zero element $\mathbf{0} \in V$ satisfying $\mathbf{v}+\mathbf{0}=\mathbf{v}=\mathbf{0}+\mathbf{v}$.
(d) Additive Inverse: For each $\mathbf{v} \in V$ there is an element $-\mathbf{v} \in V$ such that

$$
\mathbf{v}+(-\mathbf{v})=\mathbf{0}=(-\mathbf{v})+\mathbf{v} .
$$

(e) Distributivity: $(c+d) \mathbf{v}=(c \mathbf{v})+(d \mathbf{v})$, and $c(\mathbf{v}+\mathbf{w})=(c \mathbf{v})+(c \mathbf{w})$.
(f) Associativity of Scalar Multiplication: $c(d \mathbf{v})=(c d) \mathbf{v}$.
(g) Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies $1 \mathbf{v}=\mathbf{v}$.

Today we will discuss the subspace.

- Quiz 3 (covers sec. 1.8, 1.9, 2.1, 2.2) will take place in the beginning of the class on Wed. 2/19

Example 8. We let V be the upper right quadrant of \mathbb{R}^{2}, i.e.

$$
V=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\} .
$$

We define addition of vectors by:

$$
(x, y) \oplus(w, z)=(x w, y z)
$$

and define scalar multiplication by:

$$
c \odot(x, y)=\left(x^{c}, y^{c}\right)
$$

* Here we use these notations \oplus, \odot to distinguish it from ordinary ones.

Is V a vector space?
(J) $(x, y),(w, z) \in V,(x, y) \oplus(w, z)=(x w, y z) \in V$
(2) $C \mathcal{O}(x, y)=\left(x^{c}, y^{c}\right) \in V$.
(a) $(x, y) \oplus(w, z)=(x w, y z)=(w, z) \oplus(x, y)$
(b) Similar to (a).
(c) What's zero element? $(1,1)$

$$
\left.\Gamma_{\text {zen element }}^{(x, y)} \oplus(w, z)=(w, z) \quad \text { Ins, }(x, y)=(1,1) .\right]
$$

$\left(x_{w}, y z\right)$

$$
(1,1) \oplus(\omega, z)=(\omega, z)=(\omega, z) \oplus(1,1) .
$$

(d)

1 Exercise
(9)

Thus. V is a vector space. z

2.2 Subspaces

Definition: If $W \subset V$ (that is, W is a "subset" of V) and W is a vector space under the same addition and scalar multiplication defined on V, then W is called a subspace of V.
\checkmark "Subspaces" are vector spaces that are embedded in larger vector spaces.

If we want to check if $W \subset V$ is a subspace of V, it is enough to check the following 3 conditions:

1. W must contain zero element of V
2. If \mathbf{v} and \mathbf{w} in W, then $\mathbf{v}+\mathbf{w} \in W$.
3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c \mathbf{v} \in W$.

Example 1:

(1) $W=\{0\}$ is the trivial subspace of the vector space \mathbb{R}^{n}.
(1) $0 \in W J$
(2) $0+0=0 \in T V$
(3) $\quad C O=0 \in W$

UT
(2) $\left\{(x, y, 0)^{T}\right\}$ is a subspace of the vector space \mathbb{R}^{3}.
(1) $(0,0,0) \in \square J$

(2) $\left(x_{1}, y_{1}, 0\right),\left(x_{2}, y_{2}, 0\right) \in W$

$$
\left(x_{1}, y_{1}, 0\right)+\left(x_{2}, y_{2}, 0\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, 0\right) \in \tau .
$$

(3) $c(x, y, 0)=(c x, c y, 0) \in$ U

Example 2:
(1) $S=\left\{(x, y, 1)^{T}\right\}$ is a subspace of the vector space \mathbb{R}^{3}.

$$
\begin{aligned}
& (0,0,0) \notin S \\
& (x, y, 1)+(a, b, 1)=(, 2) \notin S .
\end{aligned}
$$

(2) $S=\{x \geq 0, y \geq 0, z \geq 0\}$ is also NOT a subspaces of \mathbb{R}^{3}. $(0,0,0) \in S$.

$$
-(1,2,3)=(-1,-2,-3) \notin S .
$$

(3) Another interesting example is the space of solutions to a linear homogeneous differential equation on $[a, b]$, for example,

$$
S=\left\{\begin{array}{l}
u \in \bar{F}([a, b]) ; \\
\wedge
\end{array} \quad u \text { is the solution to } u^{\prime \prime}(x)+2 u^{\prime}(x)+u(x)=0\right\} .
$$

Is S a subspace of $\mathcal{F}([a, b])$? (es functions defied on $[a, b]$.
(1) $f=0,0^{\prime \prime}+20^{\prime}+0=0 . \quad f=0 \in S$.
(2) $u, v \in S, u+v \stackrel{?}{\epsilon} S$.

$$
\left.\begin{array}{l}
u^{\prime \prime}+2 u^{\prime}+u=0 \\
v^{\prime \prime}+2 v^{\prime}+v=0
\end{array}\right\} \stackrel{a d d}{\Rightarrow}(u+v)^{\prime \prime}+2(u+v)^{\prime}+(u+v)=0 .
$$

(3) $u \in S, \quad\left(u^{\prime \prime}+2 u^{\prime}+u\right)=(c u)^{\prime \prime}+2(c u)^{\prime}+(c u)$. $0^{\prime \prime} \quad$ Then $c u \in S$
RY: 0 is essential for Example 2 (3) above.

2.3 Span and Linear Independence

Definition: Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in a vector space V. If we take any scalars c_{1}, \ldots, c_{n}, we can form a new vector in V as follows:

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}
$$

An expression of this kind is known as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
Example 1. If we have vectors $(1,2)^{T},(-2,4)^{T}$ and $(5,-1)^{T}$ in \mathbb{R}^{2}, we can form the linear combination

$$
\begin{aligned}
& \stackrel{c_{1}}{\left.2(1,2)^{T} \stackrel{c_{2}}{\substack{c_{1}}}-1-2,4\right)^{T} \stackrel{c_{3}=3}{+3}(5,-1)^{T}=(19,-3)^{T}} \\
& (0,0)^{\top}=0(1,2)^{\top}+0(-2,4)^{T}+0(5,-1)^{\top}
\end{aligned}
$$

zeno element
Example 2. We observe that $0 v=0^{\boldsymbol{\lambda}}$ for each $v \in V$. Thus 0 is a linear combination of any nonempty subset of V.

Definition: If we fix some vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in V, we can consider the set of all of their linear combinations, This set is called the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, denoted

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}
$$

In other words,

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}=\{\overbrace{\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}}^{C_{1}} v_{1}, \ldots, c_{1}, \ldots+c_{n} \in \mathbb{R}\}
$$

\checkmark In fact, $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of V.
(1) $0=0 v_{1} \in \operatorname{span}\left\{U_{1}, \ldots, v_{n}\right]$
$2 \sum_{i=1}^{n} c_{i} v_{i}, \sum_{i=1}^{n} a_{i} v_{i} \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.
$\sum_{i=1}^{n} c_{i} v_{i}+\sum_{i=1}^{n} a_{i} v_{i}=\sum_{i=1}^{n}\left(c_{i}+a_{i}\right) v_{i} \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right]$
(3) $b \sum_{i=1}^{n} c_{i} v_{i}=\sum_{i=1}^{n}\left(b c_{i}\right) v_{i} \in \operatorname{span}\left|v_{1}, \ldots, v_{n}\right|$.

Example 3. (1) Let $\mathbf{v}_{1}=(1,2,3)$. What does $\operatorname{span}\left\{\mathbf{v}_{1}\right\}$ consist of in \mathbb{R}^{3} ?

$$
\text { aline, }\{t(1,2,3) \mid t \in \mathbb{R}\}
$$

(2) What does span $\{(1,0,0),(0,1,0)\}$ consist of in \mathbb{R}^{3} ?

$$
x y \text {-plane }, \quad\{t(1,0,0)+s(0,1,0) \mid t, s \in \mathbb{R}\} \text {. }
$$

