Lecture 10: Quick review from previous lecture

- **Definition:** A **vector space** is a set V equipped with two operations:
 - (1) (Addition) If $\mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v} + \mathbf{w} \in V$.
 - (2) (Scalar Multiplication) Multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c\mathbf{v} \in V$.

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all scalars $c, d \in \mathbb{R}$:

- (a) Commutativity of Addition: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.
- (b) Associativity of Addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- (c) Additive Identity: There is a zero element $\mathbf{0} \in V$ satisfying $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$.
- (d) Additive Inverse: For each $\mathbf{v} \in V$ there is an element $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0} = (-\mathbf{v}) + \mathbf{v}.$
- (e) Distributivity: $(c+d)\mathbf{v} = (c\mathbf{v}) + (d\mathbf{v})$, and $c(\mathbf{v} + \mathbf{w}) = (c\mathbf{v}) + (c\mathbf{w})$.
- (f) Associativity of Scalar Multiplication: $c(d\mathbf{v}) = (cd)\mathbf{v}$.
- (g) Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies $1\mathbf{v} = \mathbf{v}$.

Today we will discuss the subspace.

• Quiz 3 (covers sec. 1.8, 1.9, 2.1, 2.2) will take place in the beginning of the class on Wed. 2/19

Example 8. We let V be the upper right quadrant of \mathbb{R}^2 , i.e.

 $V = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}.$

We define addition of vectors by:

$$(x,y)\oplus (w,z)=(xw,yz)$$

and define scalar multiplication by:

$$c \odot (x, y) = (x^c, y^c)$$

* Here we use these notations \oplus , \odot to distinguish it from ordinary ones. Is V a vector space?

U)
$$(X,y)$$
, $(w,z) \in V$, $(x,y) \oplus (w,z) = (x w, yz) \in V$
(2) $C \oplus (x,y) \equiv (x^{c}, y^{c}), \in V$.
(a) $(x,y) \oplus (w, z) = (xw, yz) = (w, z) \oplus (x, y)$
(b) $Sint | av to (a)$.
(c) $What is zero element ? (1,1)$
 $f(x,y) \oplus (w,z) = (w,z)$ $Thms, (x,y) = (1,1)$.
 $zero element ||$
 (Xw, yz)
 $(1,1) \oplus (w,z) = (w,z) = (w,z) \oplus (1,1)$.
(d)
 $I = Exercise$
(g)
Thus, V is a vector space, z

2.2 Subspaces

Definition: If $W \subset V$ (that is, W is a "subset" of V) and W is a vector space under the same addition and scalar multiplication defined on V, then W is called a **subspace** of V.

 \checkmark "Subspaces" are vector spaces that are embedded in larger vector spaces.

If we want to check if $W \subset V$ is a subspace of V, it is enough to check the following 3 conditions:

- 1. W must contain zero element of V
- 2. If \mathbf{v} and \mathbf{w} in W, then $\mathbf{v} + \mathbf{w} \in W$.
- 3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c\mathbf{v} \in W$.

Example 1:

(1)
$$W = \{0\}$$
 is the trivial subspace of the vector space \mathbb{R}^n .
(1) $U = \{0\}$ is the trivial subspace of the vector space \mathbb{R}^n .
(2) $\{(x, y, 0)^T\}$ is a subspace of the vector space \mathbb{R}^3 .
(1) $(0, 0, 0) \in \mathcal{W}$
(2) $\{(x, y, 0)^T\}$ is a subspace of the vector space \mathbb{R}^3 .
(1) $(0, 0, 0) \in \mathcal{W}$
(2) $\{(x, y, 0)^T\}$ is a subspace of the vector space \mathbb{R}^3 .
(1) $(0, 0, 0) \in \mathcal{W}$
(2) $\{(x, y, 0)^T\}$ is a subspace of the vector space \mathbb{R}^3 .
(2) $\{(x, y, 0)^T\}$ is a subspace of the vector space \mathbb{R}^3 .
(3) $(x_1, y_1, 0), (x_2, y_1, 0) \in \mathcal{W}$.
(4) $(x_1, y_1, 0) + (x_2, y_2, 0) \in \mathcal{W}$.
(5) $(x_1, y_2, 0) \in \mathcal{W}$.
(6) $(x, y, 0) = ((x_1 + x_2, y_1 + y_2, 0) \in \mathcal{W}$.
(7) $(x_1, y_2, 0) = ((x_1 - x_2, y_2, 0) \in \mathcal{W}$.

MATH~4242-Week~4-2

Spring 2020

Example 2:

(1)
$$S = \{(x, y, 1)^T\}$$
 is NOT a subspace of the vector space \mathbb{R}^3 .
(0, 0, 0) $\notin S$
(x, y, 1) + (a, b, 1) = (, , 2) $\notin S$.

(2)
$$S = \{x \ge 0, y \ge 0, z \ge 0\}$$
 is also NOT a subspaces of \mathbb{R}^3 .
 $(0, 0, 0) \in S$.
 $-((1, 2, 3)) = (-(1, -2, -3)) \notin S$.

(3) Another interesting example is the space of solutions to a linear homogeneous differential equation on [a, b], for example,

$$S = \{u_{h}^{e} : u \text{ is the solution to } u''(x) + 2u'(x) + u(x) = 0\}.$$
Is S a subspace of $\mathcal{F}([a,b])$? functions defined on $[a,b]$.
(1) $f = 0$. $0'' + 2 0' + 0 = 0$. $f = 0 \in S$.
(2) $u, v \in S$, $u + v \notin S$.
 $u'' + 2u' + u = 0$, add
 $u'' + 2v' + v = 0$.
(3) $u \notin S$, $(u + v)' + 2(u + v) + (u + v) = 0$
 $v'' + 2v' + v = 0$.
(3) $u \notin S$, $(u'' + 2u' + u) = (cu)'' + 2(cu) + (cu)$.
RK: 0 is essential for Example 2 (3) above.
Then $cu \notin S$.

MATH 4242-Week 4-2

2.3 Span and Linear Independence

Definition: Suppose $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are vectors in a vector space V. If we take any scalars c_1, \ldots, c_n , we can form a new vector in V as follows:

$$c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n=\sum_{i=1}^n c_i\mathbf{v}_i$$

An expression of this kind is known as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Example 1. If we have vectors $(1,2)^T$, $(-2,4)^T$ and $(5,-1)^T$ in \mathbb{R}^2 , we can form the linear combination

$$\widehat{2}(1,2)^T - (-2,4)^T + \widehat{3}(5,-1)^T = (19,-3)^T$$

$$(0,0)^T = 0 (1,2)^T + 0 (-2,4)^T + 0 (5,-1)^T$$

Example 2. We observe that 0v = 0 for each $v \in V$. Thus **0** is a linear combination of any nonempty subset of V.

Definition: If we fix some vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in V, we can consider the set of **all** of their linear combinations, This set is called the **span** of $\mathbf{v}_1, \ldots, \mathbf{v}_n$, denoted

$$\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}.$$

In other words,

$$\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\} = \left\{ \sum_{i=1}^n c_i \mathbf{v}_i : c_1,\ldots,c_n \in \mathbb{R} \right\}$$

 $\sqrt{\ln \text{ fact, span}\{\mathbf{v}_{1}, \dots, \mathbf{v}_{n}\} \text{ is a subspace of } V. }$ $(1) \quad (0) = O \mathcal{V}_{1} \in Span\{\mathcal{V}_{1}, \dots, \mathcal{V}_{n}\})$ $(2) \quad \prod_{i=1}^{n} C_{i} \mathcal{V}_{i} \quad \prod_{i=1}^{n} a_{i} \mathcal{V}_{i} \in Span\{\mathcal{V}_{1}, \dots, \mathcal{V}_{n}\})$ $(3) \quad b \quad \prod_{i=1}^{n} C_{i} \mathcal{V}_{i} \quad = \prod_{i=1}^{n} (b C_{i}) \mathcal{V}_{i} \in Span\{\mathcal{V}_{1}, \dots, \mathcal{V}_{n}\})$

(2) What does span{(1,0,0), (0,1,0)} consist of in \mathbb{R}^3 ? $xy - plane \quad \{ t(1,0,0), t \leq (0,1,0) \mid t, s \in \mathbb{R} \}$.