Lecture 11: Quick review from previous lecture

- To check if $W \subset V$ is a subspace of V, it is enough to check the following 3 conditions:

1. W must contain zero element of V,
2. If \mathbf{v} and \mathbf{w} in W, then $\mathbf{v}+\mathbf{w} \in W$,
3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c \mathbf{v} \in W$.

- A linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}
$$

- We define the set of collecting all possible linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ by

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}=\left\{\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}: c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}
$$

Today we will discuss the linear independent (dependent).

- Quiz 3 (covers sec. 1.8, 1.9, 2.1, 2.2) will take place in the beginning of the class on Wed. 2/19

Remark:

- If $\mathbf{v}_{1} \neq 0$ in \mathbb{R}^{3}, then $\operatorname{span}\left\{\mathbf{v}_{1}\right\}$ is the line $\left\{c \mathbf{v}_{1}: c \in \mathbb{R}\right\}$.
- If \mathbf{v}_{1} and \mathbf{v}_{2} are two non-zero vectors in \mathbb{R}^{3} that are not parallel to each other (i.e. $\mathbf{v}_{1} \neq c \mathbf{v}_{2}$ for any scalar c), then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ defines a plane.
$C \neq 0$
Example 4. If $\mathbf{v}_{1}=c \mathbf{v}_{2}$, then what is $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?
Observe that

$$
\begin{aligned}
a v_{1}+b v_{2} & =a\left(c v_{2}\right)+b v_{2} \\
& =\xrightarrow{(a c+b) v_{2}} \text { in } \operatorname{span}\left\{v_{2}\right\} . \\
\operatorname{span}\left\{v_{1}, v_{2}\right\} & =\operatorname{span}\left\{v_{2}\right\} \\
& =\operatorname{span}\left\{v_{1}\right\} .
\end{aligned}
$$

This will lead us naturally into the topic of linear independence, which we'll see soon.

Example 5. Determine the span of $f_{1}(x)=1, f_{2}(x)=x, f_{3}(x)=x^{2}$.

$$
\begin{aligned}
\operatorname{span}\left\{L, x, x^{2}\right\} & =\left\{a+b x+c x^{2}|a, b, c \in \mathbb{R}|\right. \\
& =\rho^{(2)}, \text { polynomials of degree } \leq 2 .
\end{aligned}
$$

In general, $\operatorname{span}\left\{1, x, \ldots, x^{n}\right\}=P^{(n)}$
\S Linear Independence and Dependence
Definition: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in a vector space V, we say they are linearly dependent if there exist scalars c_{1}, \ldots, c_{n}, not all of which are zero, so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are not linearly dependent, we say they are linearly independent.

In other words, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent if the only linear combination $\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}$ that is equal to $\mathbf{0}$ is when all the c_{i} 's are equal to 0 .

$$
c_{1} v_{1}+\ldots+c_{n} v_{n}=0
$$

Example 5. (1) From Example 1, we have seen that

$$
2(1,2)^{T}-(-2,4)^{T}+3(5,-1)^{T} \xrightarrow{C_{4}=-1}
$$

thus $(1,2)^{T},(-2,4)^{T},(5,-1)^{T},(19,-3)^{T}$ are linearly dependent.
(2) Let's consider

What are $a, b ? \quad a\binom{1}{2}+b\binom{-2}{4}=\binom{0}{0}$
or

$$
A=\left(\begin{array}{cc}
1 & -2 \\
2 & 4
\end{array}\right)
$$

$\operatorname{det} A=8 \neq 0$
A is invertible

$$
a(1,2)^{T}+b(-2,4)^{T}=0^{T}
$$

$a v_{1}+b v_{2}=0$

$$
\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\binom{a}{b}=\binom{0}{0}
$$

cnonsingular
Thus $A x=0$ has solution

$$
\left(\begin{array}{cc}
1 & -2 \\
2 & 4
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

$$
\left(\begin{array}{cc|c}
1 & -2 & 0 \\
2 & 4 & 0
\end{array}\right)
$$

\triangle homogeneous linear system

$$
\binom{a}{b}=\binom{0}{0} .
$$

Thus $\left\{\binom{1}{2},\left(\begin{array}{c}-2 \\ 4 \\ 4\end{array}\right)\right\}$ are linearly independent.

Example 6. We take the three vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
5 \\
-2 \\
-6
\end{array}\right)
$$

Determine if they are linearly independent or not?

$$
C_{1} V_{1}+C_{2} U_{2}+C_{3} V_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text {. Find } C_{1}, C_{2}, C_{3}
$$

$\left(\begin{array}{lll}V_{1} & V_{2} & v_{3} \\ & & \end{array}\right)\left(\begin{array}{l}C_{1} \\ c_{2} \\ C_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, homogenears linear system.

$$
\left(\begin{array}{ccc|c}
1 & -1 & 5 & 0 \\
2 & 2 & -2 & 0 \\
3 & 4 & -6 & 0
\end{array}\right)
$$

$$
\xrightarrow[(3)-3(1)]{(2)-21)}\left(\begin{array}{ccc|c}
1 & -1 & 5 & 0 \\
0 & 4 & -12 & 0 \\
0 & 7 & -21 & 0
\end{array}\right)
$$

C) now echo lon form
$\xrightarrow{(3)-\frac{7}{4}(2)}\left(\begin{array}{ccc|c}1 & -1 & 5 & 0 \\ 0 & 4 & -12 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\left.\begin{array}{l}
\text { form } \\
\left(\begin{array}{ccc}
1 & -1 & 5 \\
0 & 4 & -12 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
\begin{array}{l}
w \\
\text { singular, }
\end{array} \\
\text { ax }
\end{array}=\overrightarrow{0} \begin{array}{l}
0 \\
0
\end{array}\right) .
$$

singular, $A x=\overrightarrow{0}$ has

$$
4 C_{2}-12 C_{3}=0 \Rightarrow C_{2}=3 C_{3}
$$

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
-2 c_{3} \\
3 c_{3} \\
c_{3}
\end{array}\right) .
$$ nontrivial solution.

$$
C_{1}-C_{2}+5 C_{3}=0 \Rightarrow C_{1}=-2 C_{3}
$$

Thus, $\left\{v_{1}, \ldots, v_{3}\right\}$

Taking $C_{3}=1, \quad\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right) \quad-2 v_{1}+3 v_{2}+v_{3}=\overrightarrow{0}$
Thus, $\left\{v_{1}, v_{2}, V_{3}\right\}$ ave linearly dependent. 女
[Example 6 continue...]

We can then conclude that
Theorem: Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} and let $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$:
(1) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent if and only if there is a nonzero solution x to the homogeneous linear system $A \mathrm{x}=\mathbf{0}$.
(2) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent if and only if the only solution to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ is the trivial one, $\mathbf{x}=\mathbf{0}$.
(3) A vector $\mathbf{b} \in \operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ if and only if $A \mathbf{x}=\underline{\mathbf{b}}$ is compatible (i.e., has at least one solution).

Example 7. Suppose we take any four vectors in \mathbb{R}^{3}; call them $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{v}_{4}. Can they be linearly independent? For instance, we take the 4 vectors

$$
\begin{aligned}
& \mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
-4 \\
6
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right) . \\
& \left(\begin{array}{cccc}
1 & 3 & 1 & 4 \\
2 & 0 & -4 & 2 \\
-1 & 4 & 6 & 3
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
\left.C_{1} v_{1}+\cdots+c_{4} v_{4}=\overrightarrow{0}\right) \\
\left(\begin{array}{cccc|c}
1 & 3 & 1 & 4 & 0 \\
2 & 0 & -4 & 2 & 0 \\
-1 & 4 & 6 & 3 & 0
\end{array}\right) .
\end{array} . . \begin{array}{l}
\end{array} .\right.
\end{aligned}
$$

$$
\xrightarrow[(3)+(1)]{(2)-2()}\left(\begin{array}{cccc|c}
1 & 3 & 1 & 4 & 0 \\
0 & -6 & -6 & -6 & 0 \\
0 & 7 & 7 & 7 & 0
\end{array}\right)
$$

(3) $+\frac{7}{6}$ (2)
\rightarrow row echelon for.

$$
\begin{aligned}
& c_{2}+c_{3}+c_{4}=0, c_{2}=-c_{2}-c_{4} \\
& c_{1}+3 c_{2}+c_{3}+4 c_{4}=0 \\
& C_{1}=2 c_{3}-c_{4} . \\
& \left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)=\left(\begin{array}{c}
2 c_{3}-c_{4} \\
-c_{3}-c_{4} \\
c_{3} \\
c_{4}
\end{array}\right),\left(2 c_{3}-c_{4}\right) v_{1}+\left(-c_{3}-c_{4}\right) V_{2}+c_{3} V_{3}+c_{4} V_{4}=\overrightarrow{0} \\
& \quad\left\{V_{1}, \ldots, v_{4}\right\} \text { linearly dependent. . . . }
\end{aligned}
$$

- We can use the same logic to show the general fact: if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are k vectors in \mathbb{R}^{n}, then they must be linearly dependent if $k>n$.
- In other words, we have the following fact:

Fact: If $k>n$, then any set of k vectors in \mathbb{R}^{n} is linearly dependent.

