Lecture 12: Quick review from previous lecture

- Definition: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in a vector space V, we say they are linearly dependent if there exist scalars c_{1}, \ldots, c_{n}, not all of which are zero, so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0} .
$$

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are not linearly dependent, we say they are linearly independent.

Today we will discuss Basis and Dimension.

- Quiz 3 (covers sec. 1.8, 1.9, 2.1, 2.2) will take place in the beginning of the class on Wed. 2/19

Fact: A set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} is linearly independent if and only if the rank of $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ is equal to k.

State the result another way:

$$
\begin{aligned}
k \\
n-k
\end{aligned}\left[\begin{array}{cc}
* & \cdots \\
0 & \cdots \\
0 & \cdots \\
0 & - \\
0
\end{array}\right]
$$

The vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent if f the homogeneous linear system $A c=0$ has NO tree variables."
$\left\{v_{1}, \ldots \geqslant U_{n-1}, U_{n} \mid\right.$. I dependent.
Fact: If \mathbf{v}_{n} can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_{n}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right\}$.
*See also Example 4: If $\mathbf{v}_{1}=c \mathbf{v}_{2}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}\right\}$.
Write U_{n} as

$$
V_{n}=C_{1} V_{1}+\ldots+C_{n+1} V_{n-1} .
$$

Taking any sector $v_{\text {in }} \operatorname{span}\left\{v_{1} \ldots, v_{n-1}, v_{n}\right\}$. To see if v is in $\left.\operatorname{span}\left\{v_{1}, \cdots\right\rangle v_{n-1}\right\}$.

$$
\begin{aligned}
v & =a_{1} v_{1}+\ldots+a_{n-1} \sqrt{n-1}+a_{n} \sqrt{n} . \\
& =a_{1} v_{1}+\cdots+a_{n-1} \sqrt{n-1}+a_{n}\left(c_{1} v_{1}+\ldots+c_{n-1} v_{n-1}\right) \\
& =\left(a_{1}+a_{n} c_{1}\right) v_{1}+\ldots+\left(a_{n-1}+a_{n} c_{n-1}\right) v_{n-1}
\end{aligned}
$$

Thus $v_{\text {is }}$ in $\operatorname{span}\left[\begin{array}{lll}v_{1}, \ldots, & v_{n-1}\end{array}\right\}$
2.4 Basis and Dimension

Definition:
(1) If $V=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, we say that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span V.
(2) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span V and are linearly independent, we say that they form a basis of a vector space V.
*So a basis for a vector space V is a linearly independent set of vectors that span V.
Example 1. The "standard basis" of \mathbb{R}^{n} consists of the n vectors:

$$
\mathbf{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \ldots, \mathbf{e}_{n}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Thus, $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ span \mathbb{R}^{n}, since any vector $\mathbf{x}=\underbrace{}_{\left(x_{1}, \ldots, x_{n}\right)^{T}}$ can be written as:

$$
\mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}=x_{1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{l}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

To check that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are linearly independent:

$$
\begin{aligned}
& c_{1} e_{1}+\ldots .+c_{n} e_{n}=\vec{D} \\
& {\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right]_{n \times n}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .} \\
& \left.\quad \begin{array}{lll}
I_{n} & & c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=I^{-1}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right) .
\end{aligned}
$$

Thus, $\left\{e_{1}, \ldots, e_{n}\right\}$ are l. independent. So, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis. of $\mathbb{R}_{\neq 7}^{n}$

A natural question is: can there be a basis of \mathbb{R}^{n} with a different number of vectors ($\operatorname{not} n$)?

The answer is no!
In fact, "any basis of \mathbb{R}^{n} must have exactly n vectors."
Fact 1: If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.
$\left\{\omega_{1}, \ldots, \omega_{k}\right\}$.
To show this, we'll first show that

$$
\Rightarrow V=\operatorname{spar}\left\{v_{1} \ldots v_{n}\right\} .
$$

Fact 2: If V has a spanning set of size n, call it $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then any set of k elements $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$ with $k>n$ is linearly dependent. [We will find $\left.c_{1}, \ldots, c_{k}\right]$

$$
W_{j} \text { is in } V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .
$$

$$
c_{1} w_{1}+\cdots+c_{k} w_{k}=0
$$

$w_{j}=\sum_{i=1}^{n} a_{i j} v_{i}$. To find c_{j}, not all zero, so that
促
find $\vec{c} \neq \overrightarrow{0}$ to $A \vec{c}=\overrightarrow{0}$.
Thus, it ,implies $\left\{w_{1}, \ldots, w_{k}\right\} l$. dep.

$$
\begin{aligned}
& 0=C_{1} \omega_{1}+\ldots+C_{k} \omega_{k} \\
& =C_{1}\left(\sum_{i=1}^{n} a_{i}, v_{i}\right)+\ldots+C_{k}\left(\sum_{i=1}^{n} a_{i k} v_{i}\right) \\
& =\sum_{i=1}^{n} \underbrace{\left(\sum_{j=1}^{k} a_{i j} C_{j}\right)}_{/ 1} V_{i} . \\
& A \vec{c}^{1 /}, \quad A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & & \\
a_{n 1} & \cdots & a_{n k}
\end{array}\right), \quad \overrightarrow{n \times k},\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{1}
\end{array}\right) . \\
& \text { Since } k>n \text {, we can } \\
& \begin{array}{l}
4 \\
4 \\
4
\end{array}
\end{aligned}
$$

[Proof of Fact 1:]

$$
\begin{aligned}
& \text { of of Fact 1:] } \\
& V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \text {. we must } \\
& \text { have }\left[k \leq n, o / w, w_{1}, \ldots, w_{k}\right\} \\
& \text { l. dependent. } \\
& \text { Similar, } v=\operatorname{span}\left\{w_{1}, \ldots, w_{c}\right\}, \\
& \left.k \geq n, o / w\} v_{1}, \ldots, v_{n}\right\} \text { l. dependant }
\end{aligned}
$$

We have shown that if a vector space V has a basis with n elements, then any other basis must have n elements too.
In this case, we say that n is the dimension of V, and denote its dimension by $\operatorname{dim} V$.

Example 1:

- We showed that \mathbb{R}^{n} has a basis with n elements (the standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$), \mathbb{R}^{n} is n-dimensional, or $\operatorname{dim} \mathbb{R}^{n}=n$.
- Let $\mathbf{v}_{1} \neq 0$ in \mathbb{R}^{3}. Then $\operatorname{span}\left\{\mathbf{v}_{1}\right\}=\left\{c \mathbf{v}_{1}: c \in \mathbb{R}\right\}$. What's dimension and basis? \{ V_{1}
- Let \mathbf{v}_{1} and \mathbf{v}_{2} are two non-zero vectors in \mathbb{R}^{3} that are not parallel to each other. What's dimension and basis of $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?

$$
\hat{2} \quad \stackrel{\downarrow}{\left\{v_{1}, v_{2}\right\}} .
$$

