Lecture 12: Quick review from previous lecture

• **Definition:** If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are vectors in a vector space V, we say they are **linearly dependent** if there exist scalars c_1, \ldots, c_n , not all of which are zero, so that

$$c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n=\mathbf{0}.$$

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are not linearly dependent, we say they are **linearly independent**.

Today we will discuss Basis and Dimension.

• Quiz 3 (covers sec. 1.8, 1.9, 2.1, 2.2) will take place in the beginning of the class on Wed. 2/19

Fact: A set of vectors
$$\mathbf{v}_1, \dots, \mathbf{v}_k$$
 in \mathbb{R}^n is linearly independent if and only if
the rank of $A = [\mathbf{v}_1, \dots, \mathbf{v}_k]$ is equal to k .
State the vesult another way:
The vectors $\{V_1, \dots, V_k\}$ are linearly independent
if f the homogeneous linear system $A \mathbf{c} = 0$ has NO
free variables.
Fact: If \mathbf{v}_n can be written as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{n-1}$, then
span $\{\mathbf{v}_1, \dots, \mathbf{v}_{n-1}, \mathbf{v}_n\}$ = span $\{\mathbf{v}_1, \dots, \mathbf{v}_{n-1}\}$.
*See also Example 4: If $\mathbf{v}_1 = c\mathbf{v}_2$, then span $\{\mathbf{v}_1, \mathbf{v}_2\}$ = span $\{\mathbf{v}_1\}$.
 $V_n = C_n V_1 + \dots + C_n V_{n-1}$.
 $V_n = C_n V_1 + \dots + C_n V_{n-1}$.
 T_{aking} any vector V in span $\{V_1, \dots, V_n, V_n\}$.
 $V = a_1 V_1 + \dots + a_{n-1} V_{n-1} + a_n V_n$.
 $= a_1 V_1 + \dots + a_{n-1} V_{n-1} + a_n V_n$.
 $= (a_1 + a_n c_1) V_1 + \dots + (a_{n-1} + a_n C_{n-1}) V_{n-1}$.

2

Definition:

- (1) If $V = \operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, we say that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ span V.
- (2) If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ span V and are linearly independent, we say that they form a **basis** of a vector space V.

*So a basis for a vector space V is a linearly independent set of vectors that span V.

Example 1. The "standard basis" of \mathbb{R}^n consists of the *n* vectors:

$$\mathbf{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \mathbf{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, \mathbf{e}_{n} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Thus, $\mathbf{e}_1, \ldots, \mathbf{e}_n$ span \mathbb{R}^n , since any vector $\mathbf{x} = (x_1, \ldots, x_n)^T$ can be written as:

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i = \chi_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \dots + \chi_n \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

To check that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are linearly independent:

$$\begin{array}{cccc} C_{1} e_{1} + \dots + C_{n} e_{n} = \vec{D} \\ \left[e_{1} e_{2} \dots e_{n} \right]_{n \times n} \begin{pmatrix} C_{1} \\ \vdots \\ C_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \\ \begin{pmatrix} \vdots \\ \vdots \\ m \end{pmatrix} = \mathbf{J}^{-1} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \\ Thus, \quad \{e_{1}, \dots, e_{n}\} \text{ are } \mathbf{I}, \text{ independent}, \\ So , \quad \{e_{1}, \dots, e_{n}\} \text{ is } a \text{ basis, of } \mathbb{R}^{n}_{\mathcal{F}} \end{array}$$

A natural question is: can there be a basis of \mathbb{R}^n with a different number of vectors (not n)?

The answer is no!

In fact, "any basis of \mathbb{R}^n must have exactly *n* vectors."

Fact 1: If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.

[W1, -- , Wic]

To show this, we'll first show that
$$\int = zpar \{U^{r_{1}} | -r_{1}U^{r_{1}}\}.$$
Fact 2: If V has a spanning set of size n, call it $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then any set of k elements $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$ with $k > n$ is linearly dependent. $\begin{bmatrix} we & rill f had & G_{1}, \ldots, G_{k} \end{bmatrix}$
 W_{j} is $M = span \{U^{r_{1}}, \ldots, U^{r_{n}}\}.$ $\begin{bmatrix} hot & all \neq ew \quad so + hat \\ G^{r_{n}} = G^{r_{n}} \end{bmatrix}$
 $W_{j} = \sum_{i=1}^{n} a_{ij} \forall i$. To find C_{j} , not all $\neq ew$, so that $G^{r_{n}} = G^{r_{n}} \begin{bmatrix} \sum_{i=1}^{n} a_{ij} & \nabla_{i} \end{bmatrix}$ for the end $C_{i} = n$ of $M = C_{i} (M + \dots + C_{k} W_{k})$
 $U_{j} = C_{i} (M_{1} + \dots + C_{k} W_{k})$
 $= C_{i} (\sum_{i=1}^{n} a_{ij} & \nabla_{i} \end{bmatrix} + \dots + C_{k} (\sum_{i=1}^{n} a_{ik} & \nabla_{i} \end{bmatrix}$
 $= \sum_{i=1}^{n} (\sum_{j=1}^{k} a_{ij} & C_{j} \end{bmatrix} \forall i$.
 $A = (a_{i1}, \dots, a_{ik})$
 $f = C_{i} (A + M_{i}) W_{i} = C_{i} (A + M_{i}) C_{i} = C_{i} C_{i} + C_{i} + C_{i} + C_{i} + C_{i} C_{i} = C_{i} C_{i} + C$

[Proof of Fact 1:]

$$V = \operatorname{span} \left\{ V_{1}, \dots, V_{n} \right\} \quad we \quad \text{must}$$
have
$$\left\{ k \leq N \right\} \quad o/w \quad \left\{ w_{1}, \dots, w_{n} \right\}$$

$$l. \quad dependent.$$

$$S \operatorname{milar}, \quad V = \operatorname{span} \left\{ w_{1}, \dots, w_{n} \right\},$$

$$\left[k \geq N \right], \quad o/w \quad \left\{ v_{1}, \dots, v_{n} \right\} \quad dependent.$$
We have shown that if a vector space V has a basis with n elements, then any other basis must have n elements too.

In this case, we say that n is the **dimension** of V, and denote its dimension by $\dim V$.

Example 1:

We

- We showed that \mathbb{R}^n has a basis with *n* elements (the standard basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$), \mathbb{R}^n is *n*-dimensional, or dim $\mathbb{R}^n = n$.
- Let $\mathbf{v}_1 \neq 0$ in \mathbb{R}^3 . Then span $\{\mathbf{v}_1\} = \{c\mathbf{v}_1 : c \in \mathbb{R}\}$. What's dimension and basis? $\int \sqrt{}$
- Let \mathbf{v}_1 and \mathbf{v}_2 are two non-zero vectors in \mathbb{R}^3 that are not parallel to each other. What's dimension and basis of span $\{\mathbf{v}_1, \mathbf{v}_2\}$? 2 SU., J2 }.