Lecture 13: Quick review from previous lecture

- A basis for a vector space V is a İnearly independent set of vectors that span V.
- If V is any vector space that has a basis with n yectors, then any other basis must also have n vectors.

Today we will discuss the Kernel.

Example 2: The vector space $\mathcal{P}^{(n)}$ of polynomials of degree $\leq n$. What is its dimension?

We saw $p^{(n)}=\operatorname{span}\left\{1, x, \cdots, x^{n+1}\right]$.
To see if $\left\{1, x, \ldots, x^{n} \mid\right.$, we only need to show $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is ℓ. independent.

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}=0
$$

Than $C_{0}=0, \ldots, C_{n}=0$, which implies $\left\{1, x, \ldots, x^{n}\right\}$ l. independ
So, $\left\{1, x, \ldots, x^{n}\right\}$ is a basis of $p^{(n)}$.

$$
\operatorname{dim} p^{(n)}=n+1 \cdot x
$$

(\Leftarrow)
(\Rightarrow)
Fact 3: The elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form basis of V if and only if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots c_{n} \mathbf{v}_{n}
$$

(\Rightarrow). We know $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, and then we want to show $x \in V$.

$$
\begin{aligned}
x & =c_{1} v_{1}+\ldots+c_{n} v_{n} \text { is unique. } \\
x & =a_{1} v_{1}+\cdots+a_{n} v_{n} . \\
0= & x-x=\left(c_{1}-a_{1}\right) v_{1}+\ldots+\left(c_{n}-a_{n}\right) v_{n} .
\end{aligned}
$$

Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$
is l. independent. This leads to

$$
c_{1}-a_{1}=0, \ldots, c_{n}-a_{n}=0 .
$$

$$
\text { Then } c_{k}=a_{k}, k=1, \ldots, n \text {. }
$$

Example 3: Determining if $\mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ form a basis for \mathbb{R}^{3} (is equivalent to determining the matrix $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$ is nonsingular.)
$A\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Leftrightarrow$ if A is nonsingular, then $\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ $\Leftrightarrow \quad\left\{v_{1}, v_{2}, v_{3}\right\}$ is l. independent.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
3 & 1 & 1 \\
1 & 0 & 0
\end{array}\right) \xrightarrow[(12)]{\text { snitch }}\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) \xrightarrow{(3)-\frac{1}{3}(1)}\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & -1 & 0 \\
0 & -1 / 3 & -1 / 3
\end{array}\right) \\
& \xrightarrow{(3)-1 / 3} 2 \\
&\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1 / 3
\end{array}\right) . \operatorname{det} A=-1(3)(-1)(-1 / 3) \\
&=-1 \neq 0
\end{aligned}
$$

Thus, A is nonsingular, so $\left\{v_{1}, v_{2}, v_{3} \mid\right.$ is a basis of 123
Example 4: Check if $p_{1}(x)=x^{2}+3 x, p_{2}(x)=x-1, p_{3}(x)=x$ form a basis for $\mathcal{P}^{(2)}$. How can we do this?

In a basis $\left\{1, x, x^{2}\right\}$, we un associate P_{1} to

$$
\left.\begin{array}{l}
P_{1}(x)=x^{2}+3 x \longrightarrow\left(\begin{array}{l}
1 \\
x \\
x
\end{array}\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)\right. \\
P_{2}(x)=x-1 \quad\left(\begin{array}{l}
-1 \\
1 \\
0
\end{array}\right) \\
P_{3}(x)=x
\end{array} \begin{array}{l}
0 \\
1 \\
0
\end{array}\right), ~ l
$$

Just to check if $\left(\begin{array}{ccc}0 & -1 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$ is nonsingular (See EX 3)
Yes, $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a bass for $p^{(2)}$.
2.5 The Fundamental Matrix Subspaces
§ Kernel and Image

$$
\operatorname{xin} \mathbb{R}^{n} \xrightarrow{A} \quad y \text { in } \mathbb{R}^{m}
$$

We can associate to a matrix $A=A_{m \times n}$ a subspace of \mathbb{R}^{n}, called the kernel or null space of A.

Definition: The kernel of A is the set of all solutions \mathbf{x} to the homogeneous equation $A \mathbf{x}=\mathbf{0}$. We denote the kernel of A by ger A :

$$
\operatorname{ker} A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

Fact 1: $\operatorname{ker} A$ is a subspace of \mathbb{R}^{n} :
(1) 0 is in ter A.
(2) $c \in \mathbb{R}, x_{1}, x_{2}$ in $\operatorname{ker} A$. To see
if $x_{1}+x_{2} \in \operatorname{ker} A ? \quad A x_{1}=0, \quad A x_{2}=0$.

$$
\begin{aligned}
& A\left(x_{1}+x_{2}\right)=A x_{1}+A x_{2}=0+0=0 . \\
& \text { so, } \quad x_{1}+x_{2} \in \operatorname{ker} A .
\end{aligned}
$$

if $c x_{1} \in \operatorname{ker} A$?

$$
A\left(c x_{1}\right)=c A x_{1}=c 0=0 .
$$

$C x_{1} \in \operatorname{ker} A$. It
Let's observe that if \mathbf{x}_{1} and \mathbf{x}_{2} are two solutions to the equation $A \mathbf{x}=\mathbf{b}$, then what can we say about their difference, $\mathbf{x}_{1}-\mathbf{x}_{2}$?

$$
\begin{aligned}
& A x_{1}=b, A x_{2}=b \\
& A\left(x_{1}-x_{2}\right)=A x_{1}-A x_{2}=b-b=0
\end{aligned}
$$

Thus, $x_{1}-x_{2}$ is ter θ.

