Lecture 13: Quick review from previous lecture A basis for a vector space V is a linearly independent set of vectors that span V.

• If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.

Today we will discuss the Kernel.

Example 2: The vector space $\mathcal{P}^{(n)}$ of polynomials of degree $\leq n$. What is its dimension?

We saw
$$P^{(n)} = span \{1, \times, ..., \times^{n+i}\}$$
.
To see if $\{1, \times, ..., \times^{n}\}$, we only need to show
 $\{1, \times, \times^{2}, ..., \times^{n}\}$. Ts l . Independent.
 $C_{0} + C_{1} \times + C_{2} \times^{2} + ... + C_{n} \times^{n} = O$.
Then $C_{0} = 0$, $..., \times^{n}$ R a basis of $P^{(n)}$.
 $S_{0}, \{1, \times, ..., \times^{n}\}$ is a basis of $P^{(n)}$.
 $d_{1} P^{(n)} = n + 1$.
 $(=)$

Fact 3: The elements $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis of V if and only if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

$$\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n.$$

 $(=)) We know [U_1, ..., U_n] is a basis of U,$ $and then we want to show <math>x \in U.$ $X = C_1 U_1 + ... + C_n U_n$ is unique. $X = G_1 V_1 + ... + C_n U_n$. $0 = X - X = (C_1 - a_1) V_1 + ... + (C_n - a_n) V_n.$ Since $[V_1, ..., V_n]$ is a basis $[V_1, ..., V_n]$ is l. independent. This leads to $C_1 - a_1 = 0$,..., $C_n - a_n = 0.$ Then $C_k = a_k, \quad k = 1, ..., n.$

2.5 The Fundamental Matrix Subspaces

$\S~$ Kernel and Image

$$x \in \mathbb{R}^n \xrightarrow{A} y \in \mathbb{R}^m$$

We can associate to a matrix $A = A_{m \times n}$ a subspace of \mathbb{R}^n , called the *kernel* or *null space* of A.

Definition: The **kernel** of A is the set of all solutions **x** to the homogeneous equation A**x** = **0**. We denote the kernel of A by ker A:

$$\ker A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

Fact 1: ker A is a subspace of \mathbb{R}^n :

() O is m ker A.
() O is m ker A.
() CER,
$$x_1, x_2$$
 in ker A. To see
if $x_1 + x_2 \in ker A$? $Ax_1 = 0$, $Ax_2 = 0$.
 $A(x_1 + x_2) = Ax_1 + Ax_2 = 0 + 0 = 0$.
 $S_0, x_1 + x_2 \in ker A$.

$$if cx, e ker A ?$$

$$A(cx,) = cAx, = cO = O,$$

$$cx, e ker A \cdot tt$$

Let's observe that if \mathbf{x}_1 and \mathbf{x}_2 are two solutions to the equation $A\mathbf{x} = \mathbf{b}$, then what can we say about their difference, $\mathbf{x}_1 - \mathbf{x}_2$?

$$A_{X_1} = b , A_{X_2} = b.$$

$$A(X_1 - X_2) = A_{X_1} - A_{X_2} = b - b = 0.$$

$$Thus, \quad X_1 - X_2 \quad is \quad ker A.$$