Lecture 14: Quick review from previous lecture

- Let A be $m \times n$ matrix. ger $A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}$ is a subspace of \mathbb{R}^{n}.
- If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.
- The elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of V if and only if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots c_{n} \mathbf{v}_{n}
$$

- if \mathbf{x}_{1} and \mathbf{x}_{2} are two solutions to the equation $A \mathbf{x}=\mathbf{b}$, then

$$
\begin{aligned}
& x_{1}-x_{2} \quad \text { in gerA } \\
& A x_{1}=b, A x_{2}=b \\
& A\left(x_{1}-x_{2}\right)=b-b=0 .
\end{aligned}
$$

Today we will discuss the Kernel and Image.
2.5 The Fundamental Matrix Subspaces
§ Kernel and Image
Fact 2: Suppose the linear system $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}^{\star}. Then \mathbf{x} is a solution to $A \mathbf{x}=\mathbf{b}$
$\Leftrightarrow \mathbf{x}=\mathbf{x}^{\star}+z$, where $z \in \operatorname{ker} A$.
(\Rightarrow) We know x is solution $A x=b$, and then we want to show $x=x^{*}+z, \quad z \in$ fer A.
So, $x^{*}-x^{*}$ is $\operatorname{ker} A$.
Let $\quad z=x-x^{*} \in \operatorname{ker} A$
So, $\quad x=x^{*}+z, \quad z \in \operatorname{ker} A$.
$(\leftarrow) \quad x=x^{*}+z, \quad z \in \operatorname{ker} A, A x^{*}=b$.
To show if x is a solution of $A x=b$,

$$
\begin{aligned}
A x=A\left(x^{*}+z\right) & =A x^{*}+A z \\
& =b+D=b .
\end{aligned}
$$

Thus, x is a solution of $A x=b$.

Remark. In other words, any solution to $A \mathbf{x}=\mathbf{b}$ can be generated by starting with a particular solution \mathbf{x}^{*}, and adding to \mathbf{x}^{*} vectors in the kernel of A.

Fact 3: Suppose A is a matrix and the linear system $A \mathbf{x}=\mathbf{b}^{*}$ has a unique solution \mathbf{x} for some right hand side \mathbf{b}^{*}.

Then $\operatorname{ker} A=\{\mathbf{0}\}$ is the trivial subspace, which means $A \mathbf{x}=\mathbf{b}$ has a unique solution for every vector \mathbf{b} compatible with A.
$A_{m \times n}, \quad \operatorname{ker} A=\{0\} \Leftrightarrow \operatorname{rank} A=n$.
\S To construct a basis for $\operatorname{ker} A$.
Example 1. Suppose we have a 3 -by- 5 matrix A, and after bringing it to row echelon form we get:

$$
\left(\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 2 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Find a basis for $\operatorname{ker} A=\left\{x \in \mathbb{R}^{5} \mid A x=0\right\}$.
Let's solve the system $A x=0, x=\left(x_{1}, \ldots, x_{5}\right)^{\top}$.

$$
\begin{aligned}
A x=0
\end{aligned} \quad\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 2 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{5}
\end{array}\right)=
$$

$1^{\text {st }}$ equatim: $\quad x_{1}=-x_{2}=-x_{3}-4 x_{5}$.
So, each element of ter A can be expressed as
[Example 1. Continue...]

$$
\operatorname{ker}(A) \text {. Thus } w \text { is a basis for } \operatorname{ker} A, \operatorname{dim}(\operatorname{ker} A)=2
$$

Remark. In general, here's how to build a basis for the kernel. There will be one basis vector for each free variable, which is constructed by setting that free variable to 1 , and all the other free variables to 0 .

In particular, this tells us that

$$
\operatorname{dim} \operatorname{ker} A=n-r
$$

where $A=A_{m \times n}$ and r is the rank of A (since there are $n-r$ pivots).

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-x_{3}-4 & x_{5} \\
x_{3} & +4 & x_{5} \\
x_{3} \\
-2 & x_{5}
\end{array}\right) \quad, \quad x_{3}, x_{5} \in \mathbb{R} \\
& x_{3}=1, \quad x_{5}=0 ; \\
& \left(\begin{array}{c}
-1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \\
& x_{3}=0, \quad x_{5}=1: \\
& \begin{array}{c}
\left.\left.\left(\begin{array}{ccc}
-x_{3}-4 & x_{5} \\
x_{3} & +4 & x_{5} \\
x_{3} \\
-2 x_{5} \\
x_{5} \\
1
\end{array}\right)=x_{3}\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-4 \\
4 \\
0 \\
-2 \\
1
\end{array}\right), \begin{array}{l}
A_{3 \times 5} \\
\operatorname{dimker} A \\
=2 \\
=5-\underset{\text { rank } A .}{ } \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
-4 \\
4 \\
0 \\
1
\end{array}\right)\right\} \text { l. independent, spans }
\end{array}
\end{aligned}
$$

Definition: The image of the matrix A is the set containing of all images of A, that is,

$$
\operatorname{img} A=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Fact 4: $\operatorname{img} A$ is a subspace of \mathbb{R}^{m} since it is the span of the columns of A.
$A_{n \times n} . \quad A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]_{n \times n}$

$$
\begin{aligned}
\left\{A_{x}\right\} & =\left\{x_{1} v_{1}+\cdots+x_{n} v_{n}\right\} \\
& =\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .
\end{aligned}
$$

\S To construct a basis for $\operatorname{img} A$.
Let's first do this for a matrix A that is already in row echelon form. Then we'll see how to generalize this to any matrix A.

So let's take, as an example,
Example 2. Find the basis of $\operatorname{img} A$, where

$$
A=\left(\begin{array}{rrrrr}
1 & 2 & 2 & 3 & 2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Look at submatrix formed the columns isth pints

$$
\begin{aligned}
& \tilde{A}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & -1 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right) \leadsto 3 \times 3 \text { nonsingular matrix } \\
& \text { So, } \quad\left[\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right)\right] \text { a basis for ing }(A) . \\
& \operatorname{dim} \operatorname{img} A=3
\end{aligned}
$$

This same reasoning will work in general.

Fact 5:

- If A is a matrix in row echelon form, then the columns of A containing the pivots form a basis for $\operatorname{img} A$.
- In particular, the dimension of the image of A will be the number of pivots, i.e. the rank r of A. That is,

$$
\operatorname{dimimg} A=r
$$

*In particular, the rank of r does not depend on how we perform Gaussian elimination (that is, which permutations we perform). It only depends on A itself.

To summarize: to find a basis for $\operatorname{img} A$, bring A to row echelon form by Gaussian elimination. The columns of A (the original matrix) where the pivots occur are a basis for $\operatorname{img} A$. (We will see an Ex later)

We have already seen that the number of pivots, i.e. the rank of A, is equal to the dimension of the image of A :

$$
\operatorname{dimimg} A=r
$$

So far, we have shown that if r is the rank of A, then

$$
\operatorname{dimimg} A=r, \quad \operatorname{dim} \operatorname{ker} A=n-r
$$

\S Coimage of A and cokernel of A.

Definition: The coimage of A is the image of its transpose, A^{T}. It is denoted coimg A :

$$
\operatorname{coimg} A=\operatorname{img} A^{T}=\left\{A^{T} \mathbf{y}: \mathbf{y} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}
$$

The cokernel of A is the kernel of its transpose, A^{T}. It is denoted cover A : comer $A=\operatorname{ker} A^{T}=\left\{\mathbf{w} \in \mathbb{R}^{m}: A^{T} \mathbf{w}=\mathbf{0}\right\} \subset \mathbb{R}^{m}$

These are the four fundamental subspaces of $A: \operatorname{img} A, \operatorname{ker} A, \operatorname{coimg} A$, and comer A.

§ coimg A

Let's study coimg A first. It is the span of the columns of A^{T}, or equivalently the span of the rows of A. For this reason, it's also called the row space of A.

In principle, we could build a basis for coimg A the same way we learned how to do for $\operatorname{img} A$, by performing Gaussian elimination on A^{T} and taking the columns of A^{T} with pivots.

Example 3: Similar to what we did in Example 2 for A :

$$
\text { If } \quad A^{\top}=\left(\begin{array}{rrrrr}
1 & 2 & 2 & 0 & -1 \\
0 & 0 & 2 & 0 & -1 \\
0 & 0 & 0 & 7 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \text {, }
$$

then $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)\right\}$ is a basis for ing A^{\top},

