Lecture 15: Quick review from previous lecture

- The kernel of A is
$A=m \times n$ matrix

$$
\text { her } A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\} .
$$

- The image of the matrix A is the set containing of all images of A, that is,

$$
\operatorname{img} A=\left\{A \mathbb{\mathbb { R } ^ { m }}: \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

- The coinage of A is the image of its transpose, A^{T}. It is denoted coimg A :

$$
\operatorname{coimg} A=\operatorname{img} A^{T}=\left\{A^{T} \mathbf{y}: \mathbf{y} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}
$$

- The cokernel of A is the kernel of its transpose, A^{T}. It is denoted comer A :

$$
\text { cover } A=\operatorname{ker} A^{T}=\left\{\mathbf{w} \in \mathbb{R}^{m}: A^{T} \mathbf{w}=\mathbf{0}\right\} \subset \mathbb{R}^{m}
$$

Today we will discuss the kernel and image, cover, and coimg as well as inner product.

- Midterm 1 covers C1, C2, except 1.7, 2.5, 2.6.
- Practice Exam is on Canvas.
\checkmark However, there is an alternate way of building a basis for $\operatorname{coimg} A$. This method will let us see a profound connection between " imp A " and "coimg A ".

Observation.

- The key observation is that the row operations of Gaussian elimination do not change the row space of A.
- The two operations we perform for Gaussian elimination are (a) adding a multiple of one row to another row; and (b) permuting the order of rows.
- Permuting rows obviously does not change the row span. And it is easy to see that adding a multiple of one row to another row does not change the span of the rows.
- Consequently, the row echelon matrix U resulting from Gaussian elimination will have exactly the same row space as the matrix A we started with.

Conclusion 1: The row echelon matrix U has exactly the same row space as the original matrix A.

$$
\operatorname{cosing} A=\operatorname{cosing} U \text {. }
$$

If a matrix is in row echelon form, the nonzero rows are linearly independent, and consequently form a basis for the row space.

Conclusion 2: Therefore, to construct a basis for the row space coimg A, we can bring A to row echelon form using Gaussian elimination, and take the nonzero rows as the basis vectors.

Fact: If the rank of A is r, the basis we construct for coimg A will have r vectors. Thus,

$$
\operatorname{dim} \operatorname{img} A=\operatorname{dim} \text { coimg } A=r
$$

$\S \operatorname{coker} A$ (A:m×n matrix) $A^{T}: \underset{\sim}{n \times m}$ matrix To build a basis for coker A, solve the n-by- m homogeneous system $A^{T} \mathbf{y}=\mathbf{0}$, and set each \leftarrow ree variable to 1 , and the others to zero.

In other words, apply the exact same procedure as for finding a basis for $\operatorname{ker} A$.

What is the dimension of coker A ? It is the number of free variables in $A^{T} \mathbf{y}=\mathbf{0}$. Since A^{T} has m columns and rank r, there are $m-r$ free variables, hence

Fact:

$$
\operatorname{dim} \text { coker } A=m-r
$$

We can summarize what we've learned about the four fundamental subspaces in the following theorem, called the Fundamental Theorem of Linear Algebra:

Let A be an $m \times n$ matrix, and let r be its rank. Then

$$
\operatorname{dim} \operatorname{coimg} A=\operatorname{dimimg} A=\operatorname{rank} A=\operatorname{rank} A^{T}=r,
$$

$$
\operatorname{dim} \operatorname{ker} A=n-r, \quad \operatorname{dim} \text { coker } A=m-r .
$$

**Again, a very useful (and surprising) aspect of this theorem is that the column space and row space of A have the same dimension, equal to the rank r of A.

Example 4: Consider the matrix

$$
A=\left(\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 \\
1 \\
1
\end{array}\right) \begin{array}{ll}
2 & 3 \\
3 & 4 \\
1 & 1
\end{array}\right)
$$

Find a basis for $\operatorname{ker} A, \operatorname{img} A$, coimg A, comer A, respectively. ${ }^{P}$
(1) Basis for $\operatorname{ing} A:\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$.
(2) Basis for coimgA: $\left\{(1,1,2,3)^{\top},(0,-1,-1,-2)^{\top}\right\}$
(3) Basis for $\operatorname{ter} A$:

$$
\begin{array}{rl}
A x=0 & L x=0 \\
\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & -1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
x_{2} & =-x_{3}-x_{4} \\
x_{1} & =-x_{2}-2 x_{3}-3 x_{4} \\
& =-\left(-x_{3}-x_{4}\right)-2 x_{3}-3 x_{4} \\
& =-x_{3}-2 x_{4}
\end{array}
$$

Thus, general solution for $A x=0$ is

$$
\left(\begin{array}{c}
-x_{3}-2 x_{4} \\
-x_{3}-x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
x_{3}=1, x_{4}=0 \\
-1 \\
-1 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-2 \\
-1 \\
0 \\
1
\end{array}\right)
$$

So, $\left\{\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ -1 \\ i\end{array}\right)\right\}$ is abasis for ter A.
(4) Basis for coker $A=\operatorname{ker} A^{\top}$. row echelon from.

$$
\begin{gathered}
A^{\top}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & 2 \\
2 & 3 & 1 \\
3 & 4 & 1
\end{array}\right) \xrightarrow[4 \times 3]{ }\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
A^{\top} x=0 \cdot\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
x_{2}=-x_{3} \\
x_{1}=-2 x_{2}-x_{3}=x_{3} .
\end{gathered}
$$

General solution for $A^{\top} x=0$ is

$$
\left(\begin{array}{c}
x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

Thus. $\left\{\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$ is a bares for cokerft

3 Inner Products and Norms

3.1 Inner Products

§ Inner products in the Euclidean space \mathbb{R}^{n}

Definition: If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ are any two vectors in \mathbb{R}^{n}, then we define their inner product, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, by:

$$
\begin{aligned}
& \langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}=\sum^{n} x_{i} y_{i} \\
& \text { (row vector) (columnvectiv) } \quad{ }_{i=1}
\end{aligned}
$$

Note that $\left[\begin{array}{ll}x^{\top} &]_{1 \times n}[]_{n \times 1}=\left[\rrbracket_{\mid \times 1}\right.\end{array}\right.$

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{T} \mathbf{x} \quad\left(=\mathbf{x}^{T} \mathbf{y}\right)
$$

As in \mathbb{R}^{2}, if $\mathbf{x}=(x, y)^{T}$ is a vector, then the "Pythagorean Theorem" tells us that its length is given by $\sqrt{x^{2}+y^{2}}$, and is denoted by

$$
\|\mathbf{x}\|=\sqrt{x^{2}+y^{2}}
$$

- We will use this to define the length of vectors in \mathbb{R}^{n} and denote the length of a vector \mathbf{x} by

$$
\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

We call $\|\mathbf{x}\|$ the norm of \mathbf{x}.

- If $\mathbf{x} \neq 0$, then $\|\mathbf{x}\|>0$. In addition, we also have

$$
\|\mathrm{x}\|=0 \quad \Leftrightarrow \mathrm{x}=0
$$

- $\|c \times i|=|c|\|x\|$.

Example.

1. If $\mathbf{x}=(1,1,1)^{T}$ and $\mathbf{y}=(-2,1,2)^{T}$, then find $\|\mathbf{x}\|,\|\mathbf{y}\|,\langle\mathbf{x}, \mathbf{y}\rangle$ and also

$$
\begin{align*}
& \|x\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \\
& \|y\|=\sqrt{(-2)^{2}+1^{2}+2^{2}}=\sqrt{9}=3 \\
& \langle x, y\rangle=\left\langle(1,1,1)^{7},(-2,1,2)^{7}\right\rangle=1 \\
& \frac{x}{\|x\|}=\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\top} \\
& \frac{y}{\|y\|}=\left(\frac{-2}{3}, \frac{1}{3}, \frac{2}{3}\right)^{\top} \tag{H}
\end{align*}
$$

