Lecture 15: Quick review from previous lecture

• The kernel of A is A : h

$$\ker A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

- The **image** of the matrix A is the set containing of all images of A, that is, $\operatorname{img} A = \{A_{\mathbf{x}}^{\epsilon} : \mathbf{x} \in \mathbb{R}^{n}\}.$
- The **coimage** of A is the image of its transpose, A^T . It is denoted coimg A:

coimg
$$A = \operatorname{img} A^T = \{A^T \mathbf{y} : \mathbf{y} \in \mathbb{R}^m\} \subset \mathbb{R}^n$$

• The **cokernel** of A is the kernel of its transpose, A^T . It is denoted coker A:

$$\operatorname{coker} A = \ker A^T = \{ \mathbf{w} \in \mathbb{R}^m : A^T \mathbf{w} = \mathbf{0} \} \subset \mathbb{R}^m$$

Today we will discuss the kernel and image, coker, and coimg as well as inner product.

- Midterm 1 covers C1, C2, except 1.7, 2.5, 2.6.
- Practice Exam is on Canvas.

 \checkmark However, there is an alternate way of building a basis for coimg *A*. This method will let us see a profound connection between "img *A*" and "coimg *A*". **Observation.**

- The key observation is that the row operations of Gaussian elimination do <u>not</u> change the row space of A.
- The two operations we perform for Gaussian elimination are (a) adding a multiple of one row to another row; and (b) permuting the order of rows.
- Permuting rows obviously does <u>not</u> change the row span. And it is easy to see that adding a multiple of one row to another row does <u>not</u> change the span of the rows.
- Consequently, the row echelon matrix U resulting from Gaussian elimination will have exactly the same row space as the matrix A we started with.

Conclusion 1: The row echelon matrix U has exactly the same row space as the original matrix A.

If a matrix is in row echelon form, the nonzero rows are linearly independent, and consequently form a basis for the row space.

Conclusion 2: Therefore, to construct **a basis for the row space coimg** A, we can bring A to row echelon form using Gaussian elimination, and take the nonzero rows as the basis vectors.

Fact: If the rank of A is r, the basis we construct for coimg A will have r vectors. Thus,

 $\dim \operatorname{img} A = \dim \operatorname{coimg} A = r$

§ coker A ($A: m \times n$ matrix) To build a basis for coker A, solve the *n*-by-*m* homogeneous system $A^T \mathbf{y} = \mathbf{0}$, and set each free variable to 1, and the others to zero.

In other words, apply the exact same procedure as for finding a basis for ker A.

What is the dimension of coker A? It is the number of free variables in $A^T \mathbf{y} = \mathbf{0}$. Since A^T has m columns and rank r, there are m - r free variables, hence

Fact:

 $\dim \operatorname{coker} A = m - r$

We can summarize what we've learned about the four fundamental subspaces in the following theorem, called the *Fundamental Theorem of Linear Algebra*:

Let A be an $m \times n$ matrix, and let r be its rank. Then dim coimg $A = \dim \operatorname{img} A = \operatorname{rank} A = \operatorname{rank} A^T = r$, dim ker A = n - r, dim coker A = m - r.

**Again, a very useful (and surprising) aspect of this theorem is that the column space and row space of A have the same dimension, equal to the rank r of A.

MATH 4242-Week 6-1

Example 4: Consider the matrix

4

MATH 4242-Week 6-1

Spring 2020

So,
$$\left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$$
 is a basis to ker A .
(a) Basis for coker A : row echelar form
 $A^{T} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}_{4X3}$
(b) $A^{T} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}_{4X3}$
(c) $A^{T} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
(c) $A^{T} = 0$, $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
(c) $A^{T} = 0$, $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
(c) $A^{T} = 0$, $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
(c) $A^{T} = 0$, $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
(c) $A^{T} = 0$, A^{T}

3 Inner Products and Norms

3.1 Inner Products

§ Inner products in the Euclidean space \mathbb{R}^n

Definition: If $\mathbf{x} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$ are any two vectors in \mathbb{R}^n , then we define their *inner product*, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, by: (dot product) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$ (row vector) (column vector)Note that $\begin{bmatrix} x \\ y_{nx_1} \end{bmatrix}_{(x_n)} \begin{bmatrix} y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \end{bmatrix}_{(x_n)} \begin{bmatrix} y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \end{bmatrix}_{(x_n)} \begin{bmatrix} y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \\ y_{nx_1} \end{bmatrix}_{(x_n)} \\ y$

 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^T \mathbf{x} \ (= \mathbf{x}^T \mathbf{y})$

As in \mathbb{R}^2 , if $\mathbf{x} = (x, y)^T$ is a vector, then the "Pythagorean Theorem" tells us that its length is given by $\sqrt{x^2 + y^2}$, and is denoted by

$$\|\mathbf{x}\| = \sqrt{x^2 + y^2}.$$

• We will use this to define the length of vectors in \mathbb{R}^n and denote the length of a vector \mathbf{x} by

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{x_1^2 + \ldots + x_n^2}$$

We call $\|\mathbf{x}\|$ the norm of \mathbf{x} .

• If $\mathbf{x} \neq 0$, then $\|\mathbf{x}\| > 0$. In addition, we also have

$$\|\mathbf{x}\| = 0 \qquad \Leftrightarrow \mathbf{x} = 0.$$

•
$$|| cxi| = [c| ||xi|]$$

Example.