
Lecture 15: Quick review from previous lecture

• The kernel of A is

kerA = {x ∈ Rn : Ax = 0}.

• The image of the matrix A is the set containing of all images of A, that is,

imgA = {Ax : x ∈ Rn}.

• The coimage of A is the image of its transpose, AT . It is denoted coimgA:

coimgA = imgAT = {ATy : y ∈ Rm} ⊂ Rn

• The cokernel of A is the kernel of its transpose, AT . It is denoted cokerA:

cokerA = kerAT = {w ∈ Rm : ATw = 0} ⊂ Rm

—————————————————————————————————

Today we will discuss the kernel and image, coker, and coimg as well as inner

product.

—————————————————————————————————

• Midterm 1 covers C1, C2, except 1.7, 2.5, 2.6.

• Practice Exam is on Canvas.
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X However, there is an alternate way of building a basis for coimgA. This

method will let us see a profound connection between“ imgA” and “coimgA”.

Observation.

• The key observation is that the row operations of Gaussian elimination do not

change the row space of A.

• The two operations we perform for Gaussian elimination are (a) adding a mul-

tiple of one row to another row; and (b) permuting the order of rows.

• Permuting rows obviously does not change the row span. And it is easy to see

that adding a multiple of one row to another row does not change the span of

the rows.

• Consequently, the row echelon matrix U resulting from Gaussian elimination

will have exactly the same row space as the matrix A we started with.

Conclusion 1: The row echelon matrix U has exactly the same row space as

the original matrix A.

If a matrix is in row echelon form, the nonzero rows are linearly independent,

and consequently form a basis for the row space.

Conclusion 2: Therefore, to construct a basis for the row space coimgA,

we can bring A to row echelon form using Gaussian elimination, and take the

nonzero rows as the basis vectors.
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Fact: If the rank of A is r, the basis we construct for coimgA will have r

vectors. Thus,

dim imgA = dim coimgA = r

§ cokerA

To build a basis for cokerA, solve the n-by-m homogeneous system ATy = 0, and

set each free variable to 1, and the others to zero.

In other words, apply the exact same procedure as for finding a basis for kerA.

What is the dimension of cokerA? It is the number of free variables in ATy = 0.

Since AT has m columns and rank r, there are m− r free variables, hence

Fact:

dim cokerA = m− r

We can summarize what we’ve learned about the four fundamental subspaces in

the following theorem, called the Fundamental Theorem of Linear Algebra :

**Again, a very useful (and surprising) aspect of this theorem is that the column

space and row space of A have the same dimension, equal to the rank r of A.
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Example 4: Consider the matrix

A =

 1 1 2 3

2 1 3 4

1 0 1 1


Find a basis for kerA, imgA, coimgA, cokerA, respectively.
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3 Inner Products and Norms

3.1 Inner Products

§ Inner products in the Euclidean space Rn

Definition: If x = (x1, . . . , xn)T and y = (y1, . . . , yn)T are any two vectors in

Rn, then we define their inner product, denoted 〈x,y〉, by:

〈x,y〉 = x1y1 + . . . + xnyn =

n∑
i=1

xiyi

Note that

•
〈x,y〉 = yTx ( = xTy)

As in R2, if x = (x, y)T is a vector, then the “Pythagorean Theorem” tells us

that its length is given by
√

x2 + y2, and is denoted by

‖x‖ =
√

x2 + y2.

• We will use this to define the length of vectors in Rn and denote the length of

a vector x by

‖x‖ =
√
〈x,x〉 =

√
x21 + . . . + x2n

We call ‖x‖ the norm of x.

• If x 6= 0, then ‖x‖ > 0. In addition, we also have

‖x‖ = 0 ⇔ x = 0.
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Example.

1. If x = (1, 1, 1)T and y = (−2, 1, 2)T , then find ‖x‖, ‖y‖, 〈x,y〉 and also

normalize x and y.
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