Lecture 16: Quick review from previous lecture

• The **kernel** of A is

$$\ker A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

• The **image** of the matrix A is the set containing of all images of A, that is,

$$\operatorname{img} A = \{ A \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \}. = \operatorname{span} \{ \operatorname{columns} \ of \ A \}.$$

• The coimage of A is the image of its transpose, A^T . It is denoted coimg A: $\leq \text{pan} \{ \text{columns of } A^T \} = \text{coimg } A = \text{img } A^T = \{ A^T \mathbf{y} : \mathbf{y} \in \mathbb{R}^m \} \subset \mathbb{R}^n$ $\leq \text{pan} \{ \text{columns of } A^T \} = \text{coimg } A = \text{img } A^T = \{ A^T \mathbf{y} : \mathbf{y} \in \mathbb{R}^m \} \subset \mathbb{R}^n$ $\leq \text{pan} \{ \text{columns of } A^T \} = \{ \mathbf{w} \in \mathbb{R}^m : A^T \mathbf{w} = \mathbf{0} \} \subset \mathbb{R}^m$

Let A be an $m \times n$ matrix, and let r be its rank. Then dim coimg $A = \dim \operatorname{img} A = \operatorname{rank} A = \operatorname{rank} A^T = r$, dim ker A = n - r, dim coker A = m - r.

• In \mathbb{R}^n , the *inner product* is defined by:

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

$$\| \mathbf{x}_i \|_{2}^{2} = \langle \mathbf{x}, \mathbf{x} \rangle_{2} \quad \cdot \quad || \mathbf{x}_i || = \int X_i^{2} + \cdots + X_n^{2}$$

$$\cdot \quad || \mathbf{x}_i || = \int X_i^{2} + \cdots + X_n^{2}$$

Today we will discuss inner product and norms.

- Midterm 1 covers C1, C2, except 1.7, 2.5, 2.6.
- Practice Exam is on Canvas.

§ Abstract definition of general inner products

Definition: Let V be a vector space. An <u>inner product</u> on V is a functions that assigns every pairing two vectors \mathbf{x} and \mathbf{y} in V to obtain a <u>real number</u>, denoted

 $\langle \mathbf{x}, \mathbf{y} \rangle$,

such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalars $c, d \in \mathbb{R}$, the following hold:

(1) Bilinearity:

$$\langle c\mathbf{u} + d\mathbf{v}, \ \mathbf{w} \rangle = c \langle \mathbf{u}, \ \mathbf{w} \rangle + d \langle \mathbf{v}, \ \mathbf{w} \rangle,$$

$$\langle \mathbf{u}, \ c\mathbf{v} + d\mathbf{w} \rangle = c \langle \mathbf{u}, \ \mathbf{v} \rangle + d \langle \mathbf{u}, \ \mathbf{w} \rangle,$$

(2) Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$,

 $\exists (\hat{\mathbf{z}})$ Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$.

A a vector space V equipped with a specific inner product is called an **inner product space**.

 \checkmark We have already checked that the inner product on \mathbb{R}^n defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$$

satisfies these three axioms.

Now let's take a look at some other inner product spaces.

Example. Let $C^0 = C^0(I)$ denote the vector space of continuous functions on an interval I = [a, b], with the usual addition and scalar multiplication operations.

We can turn C^0 into an "inner product space" by defining the following *inner* product:

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx. \qquad \flat \, \forall \, \mathbb{A} \, .$$

*This is sometimes called the L^2 inner product (the "L" stands for "Lebesgue"). Let's check that this satisfies the defining properties of an inner product:

f, g, h e C°, c, d e R. () Bilmearity: $\langle cf + dg, h \rangle = \int_{a}^{b} (cf + dg) (x) h(x) dx$ $= \int_{a}^{b} (cf(x) + dg(x)) h(x) dx$ = $c \int_{a}^{b} f(x) h(x) dx + d \int_{a}^{b} g(x) h(x) dx$ $= c \langle f, h \rangle + d \langle g, h \rangle$ = Exercise = c<f,g>+ d(f,h)? < f, cq + dh >(2) Symmetry: $\langle f, g \rangle = \int f(x)g(x) dx = \int g(x)f(x) dx$ $= \langle q, f \rangle$

(3) positivity:

$$\langle f, f \rangle = \int_{a}^{b} f^{2}(x) dx \ge 0$$
.
Check: $\langle f, f \rangle = 0$ iff $f = 0$.
(\in) If $f = 0$, then $\int_{a}^{b} f^{2} dx = 0$
 $so \quad \langle f, f \rangle = 0$.
($=$) If $\langle f, f \rangle = 0$, we want to
show $f = 0$.
 $\int_{a}^{b} f^{2}(x) dx = 0$ Since fis cathur
we get f must be zero.
Thus, $\langle f, g \rangle = \int_{a}^{b} f g dx$ is an inner
product. Then C^{0} equipped with $\langle f, g \rangle$.
is an inner product space.

$\$ The same vector space V can have many different inner products.

For example, while we originally equipped \mathbb{R}^n with the standard inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$, we can also define "other" inner products on \mathbb{R}^n as well. See discussions below.

Example. If c_1, \ldots, c_n are positive numbers, we can define

- We can define an even more general class of inner products on \mathbb{R}^n , as follows: **Example.** Take any *n*-by-*n*, nonsingular matrix *A*.

Now we define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T A^T A \mathbf{y}.$$

Let's check that this is an inner product.

Example. As an example of this kind of inner product in \mathbb{R}^2 , let's define the inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = (x_1 \ x_2) \begin{pmatrix} \sqrt{2} & -\sqrt{3} \\ 0 & \sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ -\sqrt{3} & \sqrt{3} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
(1)
= 2\pi \ y_1 + 2(\pi - \pi)(y_1 - y_2) \qquad (2)

$$= 2x_1y_1 + 3(x_2 - x_1)(y_2 - y_1)$$
⁽²⁾

Remark. [Comparison:]

- 1. The norm of $(1,3)^T$:
 - in usual inner product: $\sqrt{1+3^{2}} = \sqrt{10}$
 - in inner product defined in (1): $(|(1,3)||^2 = \langle (1,3), (1,3) \rangle = (4)$ $|((1,3)|| = \sqrt{4}$

2. The inner product of $(1, 1)^T$ and $(-1, 2)^T$:

• in usual inner product: $\langle (1,1)^7, (-1,2)^7 \rangle = -|+2^2/.$

= -2, #

• in inner product defined in (1): $\langle ((, 1))^7, (-1, 2)^7 \rangle = 2(1)(-1) + 3((-1)(2+1))$

MATH 4242-Week 6-2

Summary.

• We saw many different inner products on \mathbb{R}^n , namely those of the form

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T B \mathbf{y}$$

for a matrix $B = A^T A$ where A is nonsingular.

• When B = I, this includes the usual inner product $\sum_{i=1}^{n} x_i y_i$. Note that this usual inner product on \mathbb{R}^n is called the *dot product*.

- Let's look at another example with weighted inner product.

Example. We can also define weighted inner products on $C^0(I)$. If w(x) is any positive, continuous function, we can define

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x) w(x) dx$$

It is a straightforward exercise to check that this is an inner product.

3.2 Inequalities

§ The Cauchy-Schwarz Inequality

In \mathbb{R}^n , we have seen from Calculus that the dot product between two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ can be geometrically characterized by

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta,$$

where θ is the angle between the two vectors. Thus,

$$|\mathbf{v} \cdot \mathbf{w}| \le \|\mathbf{v}\| \|\mathbf{w}\|.$$

In fact,

Let V be an inner product space. Then the following Cauchy-Schwarz inequality holds: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leq ||\mathbf{v}|| ||\mathbf{w}||$ for all $\mathbf{v}, \mathbf{w} \in V$.

Thus, Cauchy-Schwarz inequality allows us to define the cosine of the angle θ between the two vectors \mathbf{v}, \mathbf{w} in an inner vector space V:

$$\cos \theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}.$$

To see this, we know this ratio lies between -1 and 1, and defining the angle θ in this way makes sense.

Before showing Cauchy-Schwarz inequality , let's look at some examples.