Lecture 16: Quick review from previous lecture

- The kernel of A is

$$
\text { her } A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\} .
$$

- The image of the matrix A is the set containing of all images of A, that is,

$$
\operatorname{img} A=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{R}^{n}\right\} .=\operatorname{span}\{\text { columns of } A\} \text {. }
$$

- The coinage of A is the image of its transpose, A^{T}. It is denoted coimg A : span $\left\{\right.$ columns of $\left.\Delta^{+}\right\}=\operatorname{coimg} A=\operatorname{img} A^{T}=\left\{A^{T} \mathbf{y}: \mathbf{y} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}$

$$
\text { cover } A=\operatorname{ker} A^{T}=\left\{\mathbf{w} \in \mathbb{R}^{m}: A^{T} \mathbf{w}=\mathbf{0}\right\} \subset \mathbb{R}^{m}
$$

Let A be a $m \times n$ matrix, and let r be its rank. Then dim coimg $A=\operatorname{dimimg} A=\operatorname{rank} A=\operatorname{rank} A^{T}=r$, $\operatorname{dim} \operatorname{ker} A=n-r, \quad \operatorname{dim}$ cover $A=m-r$.

- In \mathbb{R}^{n}, the inner product is defined by:

$$
\begin{array}{ll}
& \cdot\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i} \\
\|x\|^{2}=\langle x, x\rangle . & \cdot\|x\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}} \\
& \cdot\|c x\|=|c|\|x\| .
\end{array}
$$

Today we will discuss inner product and norms.

- Midterm 1 covers C1, C2, except 1.7, 2.5, 2.6.
- Practice Exam is on Canvas.

§ Abstract definition of general inner products

Definition: Let V be avector space. An inner product on V is a functions that assigns every pairing two vectors \mathbf{x} and \mathbf{y} in V to obtain a real number, denoted

$$
\langle\mathbf{x}, \mathbf{y}\rangle,
$$

such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalars $c, d \in \mathbb{R}$, the following hold:
(1) Bilinearity:

$$
\begin{aligned}
& \langle c \mathbf{u}+d \mathbf{v}, \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{w}\rangle+d\langle\mathbf{v}, \mathbf{w}\rangle, \\
& \langle\mathbf{u}, c \mathbf{v}+d \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle+d\langle\mathbf{u}, \mathbf{w}\rangle,
\end{aligned}
$$

(2) Symmetry: $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$,
$3(反)$ Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=0$.

A a vector space V equipped with a specific inner product is called an inner product space.
\checkmark We have already checked that the inner product on \mathbb{R}^{n} defined by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}
$$

satisfies these three axioms.

Now let's take a look at some other inner product spaces.

Example. Let $C^{0}=C^{0}(I)$ denote the vector space of continuous functions on an interval $I=[a, b]$, with the usual addition and scalar multiplication operations.

We can turn C^{0} into an "inner product space" by defining the following inner product:

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x . \quad b>a .
$$

*This is sometimes called the L^{2} inner product (the " L " stands for "Lebesgue").
Let's check that this satisfies the defining properties of an inner product:

$$
f, g, h \in C^{0}, c, d \in \mathbb{R}
$$

(1) Bilmearity:

$$
\begin{aligned}
\langle c f+d g, h\rangle & =\int_{a}^{b}(c f+d g)(x) h(x) d x \\
& =\int_{a}^{b}(c f(x)+d g(x)) h(x) d x \\
& =c \int_{a}^{b} f(x) h(x) d x+d \int_{a}^{b} g(x) h(x) d x \\
& =c\langle f, h\rangle+d\langle g, h\rangle \\
\langle f, c g+d h\rangle & =E x e r<i s e=c\langle f, g\rangle+d\langle f, h\rangle
\end{aligned}
$$

(2) Symmetry:

$$
\begin{array}{r}
\langle f, g\rangle=\int f(x) g(x) d x=\int g(x) f(x) d x \\
=\langle g, f\rangle .
\end{array}
$$

(3) positivity:

$$
\langle f, f\rangle=\int_{a}^{b} f^{2}(x) d x \geq 0
$$

Check: $\langle f, f\rangle=0$ iff $f=0$.
(\Leftarrow) If $f=0$, then $\int_{a}^{b} f^{2} d x=0$
So $\langle f, f\rangle=0$.
(\Rightarrow) If $\langle f, f\rangle=0$, we want to show $f=0$.

$$
\int_{a}^{b} f^{2}(x) d x=0 \text {. since } f \text { is continuer }
$$

we get f must be zero.
Thus, $\langle f, g\rangle=\int_{a}^{b} f g d x$ is an inner product. Then c^{0} equipped with $\langle f, g\rangle$. is an inner product space.
\S The same vector space V can have many different inner produts.
For example, while we originally equipped \mathbb{R}^{n} with the standard inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, we can also define "other" inner products on \mathbb{R}^{n} as well. See discussions below.

Example. If c_{1}, \ldots, c_{n} are positive numbers, we can define

$$
\langle\mathbf{x}, \mathbf{y}\rangle=c_{1} x_{1} y_{1}+\ldots+c_{n} x_{n} y_{n}=\sum_{i=1}^{n} c_{i} x_{i} y_{i}
$$

This is a legitimate inner product (check this as an exercise). It is called a weighted inner product, with weights c_{1}, \ldots, c_{n}.
(1) Bilinearity: Exercises.
(3) positnity:

$$
\begin{aligned}
& \left.\langle x, x\rangle=C_{1} x_{1}^{2}+\cdots+C_{n} x_{n}^{2}\right\rangle 0 \\
& \text { if } x \neq \overrightarrow{0}
\end{aligned}
$$

Observe that while we can write the ordinary $\langle x \times\rangle=0$ can write the "weighted inner product" as

$$
\begin{aligned}
& \text { duct on } \mathbb{R}^{n} x_{1} \text { as } \mathbf{x}^{T} \mathbf{y}, \text { we } \\
& c_{1}>0, \ldots, x_{n}>0 \\
& \Leftrightarrow x_{1}=0, \ldots, x_{n}=0 .
\end{aligned}
$$

$$
\langle x, y\rangle=x^{\top}\left[\begin{array}{lll}
c_{1} & & 0 \\
& \ddots & \\
0 & & c_{n}
\end{array}\right] y=x^{\top} D y, \quad D=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right) . \quad \begin{array}{r}
\text { nth } c_{1}>0, \\
\\
\end{array}
$$

- We can define an even more general class of inner products on \mathbb{R}^{n}, as follows:

Example. Take any n-by- n, nonsingular matrix A.
Now we define

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A^{T} A \mathbf{y} .
$$

Let's check that this is an inner product.
(1) Bilinearity: Exercise.
(2) Symmetry:

$$
\begin{aligned}
\langle x, y\rangle & \left.=x^{\top} A^{\top} A y .\right) \text { since } x^{\top} A^{\top} A y \text { is a scald. } \\
& =\left(x^{\top} A^{\top} A y\right)^{\top} .
\end{aligned}
$$

$$
=y^{\top} A^{\top} A x \text {. }
$$

$$
=\langle\varphi, x\rangle
$$

(3) Positivity:

$$
\begin{aligned}
\langle x, x\rangle & =x^{\top} A^{\top} A x . \\
& =z^{\top} z \quad \text { Let } z=A x \\
& =\langle z, z\rangle \\
& =z_{1}^{2}+\ldots+z_{n}^{2}
\end{aligned}
$$

if $\left(x_{-} x\right\rangle=0 \Leftrightarrow z_{1}=0, \ldots, z_{n}=0$.
$\Leftrightarrow \quad z=0$
$\Leftrightarrow \quad A x=0$
$\Leftrightarrow \quad x=0$ \& since $A B$ nonsingular
Thus it's an inner product.

Example. As an example of this kind of inner product in \mathbb{R}^{2}, let's define the inner product

$$
\begin{align*}
\langle\mathbf{x}, \mathbf{y}\rangle & =\left(x_{1} x_{2}\right)\left(\begin{array}{cc}
\sqrt{2}-\sqrt{3} \\
0 & \sqrt{3}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{2} & 0 \\
-\sqrt{3} & \sqrt{3}
\end{array}\right)\binom{y_{1}}{y_{2}} \tag{1}\\
& =2 x_{1} y_{1}+3\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right) \tag{2}
\end{align*}
$$

Remark. [Comparison:]

1. The norm of $(1,3)^{T}$:

- in usual inner product: $\sqrt{1+3^{2}}=\sqrt{10}$.
- in inner product defined in (1):

$$
\begin{aligned}
& \|(1,3)\|^{2}=\langle(1,3),(1,3)\rangle=14 \\
& \|(1,3)\|=\sqrt{14}
\end{aligned}
$$

2. The inner product of $(1,1)^{T}$ and $(-1,2)^{T}$:

- in usual inner product: $\left\langle(1,1)^{\top},(-1,2)^{\top}\right\rangle=-1+2=1$.
- in inner product defined in (1):

Summary.

- We saw many different inner products on \mathbb{R}^{n}, namely those of the form

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} B \mathbf{y}
$$

for a matrix $B=A^{T} A$ where A is nonsingular.

- When $B=I$, this includes the usual inner product $\sum_{i=1}^{n} x_{i} y_{i}$. Note that this usual inner product on \mathbb{R}^{n} is called the dot product.
- Let's look at another example with weighted inner product.

Example. We can also define weighted inner products on $C^{0}(I)$. If $w(x)$ is any positive, continuous function, we can define

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x
$$

It is a straightforward exercise to check that this is an inner product.

3.2 Inequalities

§ The Cauchy-Schwarz Inequality

In \mathbb{R}^{n}, we have seen from Calculus that the dot product between two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ can be geometrically characterized by

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

where θ is the angle between the two vectors. Thus,

$$
|\mathbf{v} \cdot \mathbf{w}| \leq\|\mathbf{v}\|\|\mathbf{w}\|
$$

In fact,
Let V be an(inner product space. Then the following Cauchy-Schwarz inequality holds:

$$
|<\mathbf{v}, \mathbf{w}>| \leq\|\mathbf{v}\|\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V
$$

Thus, Cauchy-Schwarz inequality allows us to define the cosine of the angle θ between the two vectors \mathbf{v}, \mathbf{w} in an inner vector space V :

$$
\cos \theta=\frac{<\mathbf{v}, \mathbf{w}>}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

To see this, we know this ratio lies between -1 and 1 , and defining the angle θ in this way makes sense.

Before showing Cauchy-Schwarz inequality, let's look at some examples.

