Lecture 17: Quick review from previous lecture

- Let V be an inner product space. Then the following Cauchy-Schwarz inequality holds:

$$
\mid \mathbf{v}, \mathbf{w} \lambda \leq\|\mathbf{v}\|\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V \text {. }
$$

- A a vector space V equipped with a specific inner product is called an inner product space.
- $\langle\mathbf{v}, \mathbf{w}\rangle$ is an inner product on V if the following hold:
(1) Bilinearity:

$$
\begin{aligned}
& \langle c \mathbf{u}+d \mathbf{v}, \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{w}\rangle+d\langle\mathbf{v}, \mathbf{w}\rangle, \\
& \langle\mathbf{u}, c \mathbf{v}+d \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle+d\langle\mathbf{u}, \mathbf{w}\rangle,
\end{aligned}
$$

(2) Symmetry: $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$,
(2) Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=0$.

EX: on $\mathbb{R}^{n},\langle x, y\rangle=x_{1}, y_{1}+\cdots+x_{n} y_{n}$ is an inner product.
Today we will discuss some inequalities and Norms.
continuous functions on $[0, \pi]$.
Before showing Cauchy-Schyarz inequality, let's look at some examples.
Example 1. Consider $C^{0}[0, \pi]$, compute the inner product between $f(x)=\cos (x)$ and $g(x)=\sin (x)$. Also compute their angle θ.

$$
\begin{aligned}
\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x & =\int_{0}^{\pi} \cos x \sin x d x \\
& =\left.\frac{1}{2} \sin ^{2} x\right|_{0} ^{\pi}=0
\end{aligned}
$$

$$
\cos \theta=\frac{\langle f, g\rangle}{\|f\|\|g\|}=0 . \quad \theta=\pi / 2
$$

On the other hand, consider $C^{0}[0, \pi / 2]$, compute the inner product between $f(x)=\cos (x)$ and $g(x)=\sin (x)$. Also compute their angle θ.

$$
\begin{aligned}
\langle f, g\rangle= & \int_{0}^{\pi / 2} \cos x \sin x d x=\left.\frac{1}{2} \sin ^{2} x\right|_{0} ^{\pi / 2}=\frac{1}{2}(1-0)=1 / 2 \\
\|f\|^{2}= & \langle f, f\rangle=\int_{0}^{\pi / 2} \cos ^{2} x d x
\end{aligned}=\int_{0}^{\pi / 2} \frac{1+\cos (2 x)}{2} d x .
$$

*Note how the choice of interval $([0, \pi]$ versus $[0, \pi / 2])$ changes the inner product between functions.
[Proof of the Cauchy-Schwarz inequality:] $\quad(\langle v, w\rangle \leqslant\|v\|\|w\|)$. If $y \neq 0$, consider

$$
\begin{aligned}
\|x-c y\|^{2} & =\langle x-c y, x-c y\rangle \\
& =\langle x, x\rangle-\frac{c\langle x, y\rangle-c\langle y, x\rangle}{\langle\text { symmetry }}+c^{2}\langle y, y\rangle \\
& =\|x\|^{2}-2 c\langle x, y\rangle+c^{2}\|y\|^{2}
\end{aligned}
$$

Taloing $c=\frac{\langle x, y\rangle}{\|y\|^{2}}$, then we have

$$
\begin{aligned}
0 \leqslant \| x-\left(y \|^{2}\right. & =\|x\|^{2}-2 \frac{\langle x, y\rangle}{\|y\|^{2}}\langle x, y\rangle+\frac{\langle x, y\rangle^{2}}{\|y\|^{4}}\|y\|^{2} \\
& =\|x\|^{2}-\frac{(x, y\rangle^{2}}{\|y\|^{2}}
\end{aligned}
$$

Then $\frac{\langle x, y\rangle^{2}}{\|y\|^{2}} \leq\|x\|^{2}$, it implies $(\langle x, y\rangle \mid \leq\|x\|\|y\|$

When does equality hold in the Cauchy-Schwarz inequality?

$$
x=c y \text { for some constant } c \text {. }
$$

Definition: Let V be an inner product space. We call $\mathbf{x}, \mathbf{y} \in V$ are orthogonal (perpendicular) if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

In Example 1, we saw that

$$
\int_{0}^{\pi} \cos (x) \sin (x) d x=0
$$

Thus, we say $f(x)=\cos (x)$ and $g(x)=\sin (x)$ are orthogonal to each other on the interval $[0, \pi]$.

A vector \mathbf{w} in \mathbb{R}^{n} is orthogonal to vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ if and only if \mathbf{w} is in the cokernel of the matrix $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ (i.e. in the kernel of A^{T}).

To see this: $\left\langle w, v_{1}\right\rangle=0, \ldots,\left\langle w, v_{k}\right\rangle=0$
So, $\quad U_{1}^{\top} w=0, \cdots, \quad V_{k}^{\top} w=0$.
$A^{\top} w=\left[\begin{array}{c}v_{1}^{\top} \\ v_{2}^{\top} \\ \vdots_{k}^{\top}\end{array}\right] w=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$, Then $w \in \operatorname{ker}\left(A^{\top}\right)$.
Example 2. Suppose we want to find a vector \mathbf{w} that is orthogonal to $\mathbf{v}_{1}=$ $(1,1,1)^{T}$ and $\mathbf{v}_{2}=(2,1,-1)^{T}$.

$$
\begin{array}{ll}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1
\end{array}\right]\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\binom{0}{0} .} \\
\xrightarrow{(2)-2(1)}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -3
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\binom{0}{0} . & \vec{w}=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right), \not 又 \\
\vec{\omega}=\left(\begin{array}{cc}
2 & w_{3} \\
-3 & w_{3} \\
w_{3}
\end{array}\right), \quad w_{3} \in \mathbb{R} .
\end{array}
$$

§ The Triangle Inequality
Let V be an inner product space. Then the following Triangle Inequality holds:

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V
$$

[Proof:]

$$
\begin{aligned}
\|v+w\|^{2} & =\langle v+w, v+w\rangle \\
& =\langle v, v\rangle+2\langle v, w\rangle+\langle w, w\rangle \\
& =\|v\|^{2}+2\langle v, w\rangle+\|w\|^{2} \\
& \leqslant\|v\|^{2}+2\|v\|\|w\|+\|w\|^{2} \\
& =(\|v\|+\|w\|)^{2} \\
\Gamma(a+b)^{2} & =a^{2}+2 a b+b^{2}
\end{aligned}
$$

Then $\|v+w\| \leq\|v\|+\|w\|$.

3.3 Norms

Recall some properties satisfied by the norm $\|\mathbf{v}\|$ on an inner product space, where $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$; (induced by the miner product)

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|\left(\begin{array}{rl}
\|c v\|^{2} & =\langle c v, c u\rangle \tag{1}\\
& =c^{2}\langle v, v\rangle \\
& =c^{2}\|v\|^{2}
\end{array}\right.
$$

(2) $\|\mathbf{v}\| \geq 0$, and $\|\mathbf{v}\|=0$ iff $\mathbf{v}=0$.

Then $\|c u\|=|c|\|u\|$
(3) the triangle inequality:

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|
$$

There are other natural measures of the "size" of a vector that satisfy these same three conditions, but that cannot be defined in terms of an inner product.

For example,
(1) on \mathbb{R}^{n} we can measure the size of a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ by the sum of absolute values of its entries:

$$
\begin{array}{r}
\sum_{i=1}^{n}\left|v_{i}\right| \quad \text { (satisfies (1)-(3), will } \\
\text { check it later) }
\end{array}
$$

(2) On $C^{0}([a, b])$, we can measure the size of a continuous function f by the integral of its absolute value:

$$
\begin{array}{r}
\int_{a}^{b}|f(x)| d x \quad \text { (satisfies (1)-(3), will } \\
\text { check it later) }
\end{array}
$$

Neither of these quantities can be defined in terms of an inner product; but they are still useful notions of the "size of vectors".

Definition: A norm on a vector space V assigns a non-negative real number $\|\mathbf{v}\|$ to each vector $\mathbf{v} \in V$, such that for every $\mathbf{v}, \mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:
(1) Positivity: $\|\mathbf{v}\| \geq 0 ;\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=0$.
(2) Homogeneity: $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.
(3) Triangle inequality: $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.

Remark: We checked that when a norm is induced from an inner product. these three conditions are satisfied automatically". But in general, a norm need not arise from an inner product on V.

1. p norm on \mathbb{R}^{n}. We've already seen several on \mathbb{R}^{n} and $C^{0}([a, b])$.

Example. We have seen that $\|\mathbf{x}\|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ is the norm induced from the dot product on \mathbb{R}^{n}.

Example. $\|\mathbf{x}\|=\sum_{i=1}^{n}\left|x_{i}\right|$. Let's check the three conditions to make sure this is a valid norm.
(1) $\overline{\overline{\| x} \|} \geq 0 ; \quad\|x\|=0$ implies $\left|x_{i}\right|=0, i=1, \ldots, n$.
implies $x=0$ and vice versa.
(2) $\|c x\|=\sum_{i=1}^{n}\left|c x_{i}\right|=|c|\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=|c|\|x\|$
(3) $||x+y||=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|+\left|y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)+\left(\sum_{i=1}^{n}\left|y_{i}\right|\right)$
$\begin{array}{ll}\text { Thus } \\ \|x\|=\sum^{n}\left|x_{i}\right| \text { defies } & =\|x\|+\|y\| \mid .\end{array}$
$\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|$ defines a norm on \mathbb{R}^{n}.

