Lecture 17: Quick review from previous lecture

• Let V be an inner product space. Then the following **Cauchy-Schwarz** inequality holds:

 $|\langle \mathbf{v}, \mathbf{w} \rangle| \le ||\mathbf{v}|| ||\mathbf{w}||$ for all $\mathbf{v}, \mathbf{w} \in V$.

- A a vector space V equipped with a specific inner product is called an **inner product space**.
- $\langle \mathbf{v}, \mathbf{w} \rangle$ is an **inner product** on V if the following hold:
 - (1) Bilinearity:

$$\langle c\mathbf{u} + d\mathbf{v}, \ \mathbf{w} \rangle = c \langle \mathbf{u}, \ \mathbf{w} \rangle + d \langle \mathbf{v}, \ \mathbf{w} \rangle,$$

$$\langle \mathbf{u}, \ c\mathbf{v} + d\mathbf{w} \rangle = c \langle \mathbf{u}, \ \mathbf{v} \rangle + d \langle \mathbf{u}, \ \mathbf{w} \rangle,$$

- (2) Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$,
- (2) Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$.

$$\underline{EX}$$
: On \mathbb{R}^n , $\langle x, y \rangle = x_i y_i + \dots + x_n y_n$ is an inner product.

Today we will discuss some inequalities and Norms.

Before showing Cauchy-Schwarz inequality, let's look at some examples. **Example 1.** Consider $C^0[0,\pi]$, compute the inner product between $f(x) = \cos(x)$ and $g(x) = \sin(x)$. Also compute their angle θ .

$$\langle f, g \rangle = \int_{0}^{\pi} f(x) g(x) dx = \int_{0}^{\pi} \cos x \sin x dx$$

= $\frac{1}{2} \sin^{2} x \Big|_{0}^{\pi} = 0$.
$$\cos \theta = \frac{\langle f, g \rangle}{||f|||g|||} = 0. \quad \theta = \frac{\pi}{2}.$$

On the other hand, consider $C^{0}[0, \pi/2]$, compute the inner product between $f(x) = \cos(x)$ and $g(x) = \sin(x)$. Also compute their angle θ , $\langle f, g \rangle = \int_{-\infty}^{\pi/2} \cos x \sin x \, dx = \frac{1}{2} \sin^{2} x \Big|_{0}^{\pi/2} = \frac{1}{2} (1-0)^{-1/2}$. $||f||^{2} = \langle f, f \rangle = \int_{-\infty}^{\pi/2} \cos^{2} x \, dx = \int_{-\infty}^{\pi/2} \frac{|f + \cos(2x)|}{2} \, dx$ $= \frac{1}{2} O\Big|_{0}^{\pi/2} = \pi/4$. $||g||^{2} = \langle g, g \rangle = \int_{-\infty}^{\pi/2} \sin^{2} x \, dx = \int_{0}^{\pi/2} \frac{|f - \cos(2x)|}{2} \, dx$. $\cos \theta = \frac{\langle f, g \rangle}{||f||||g||} = \frac{1}{\pi/4} = \frac{2}{\pi}$ $\theta = \cos^{-1}\Big(\frac{2}{\pi}\Big)$.

*Note how the choice of interval $([0, \pi]$ versus $[0, \pi/2]$) changes the inner product between functions.

$$\begin{aligned} & [\operatorname{Proof of the Cauchy-Schwarz inequality:]} \left(|\langle U, w \rangle| \leq ||U|| ||W|| \right) \\ & \text{If } y \neq 0, \quad \text{onsider} \\ & ||x - cy||^2 = \langle x - cy, x - cy \rangle \\ &= \langle x, x \rangle - c \langle x, y \rangle - c \langle y, x \rangle + c \langle y, y \rangle \\ &= ||x||^2 - 2c \langle x, y \rangle + c \langle y, y \rangle + c \langle y, y \rangle \\ &= ||x||^2 - 2c \langle x, y \rangle + c^2 ||y||^2 \\ & \text{Talcng } c = \frac{\langle x, y \rangle}{||y||^2}, \quad \text{then } we \quad \text{have} \\ & 0 \leq ||x - cy||^2 = ||x||^2 - 2 \frac{\langle x, y \rangle}{||y||^2} \langle x, y \rangle + \frac{\langle x, y \rangle^2}{||y||^2} ||y||^2 \\ &= ||x||^2 - \frac{\langle x, y \rangle}{||y||^2} \leq ||x|||y||^2 \end{aligned}$$

When does equality hold in the Cauchy-Schwarz inequality?

X = cy for some constant c.

Definition: Let V be an inner product space. We call $\mathbf{x}, \mathbf{y} \in V$ are orthogonal (perpendicular) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

In Example 1, we saw that

$$\int_0^\pi \cos(x)\sin(x)dx = 0$$

Thus, we say $f(x) = \cos(x)$ and $g(x) = \sin(x)$ are orthogonal to each other on the interval $[0, \pi]$.

A vector \mathbf{w} in \mathbb{R}^n is orthogonal to vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ if and only if \mathbf{w} is in the cokernel of the matrix $A = [\mathbf{v}_1, \ldots, \mathbf{v}_k]$ (i.e. in the kernel of A^T).

To see this: $\langle w, V, \rangle = 0$, ..., $\langle w, V_{k} \rangle = 0$ $\langle s_{0}, V_{1}^{T} w = 0$, ..., $V_{k}^{T} w = 0$. $A^{T} w = \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ v_{k}^{T} \end{bmatrix} w = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$, Then $w \in \ker(A^{T})$ $(A^{T}, W) = \begin{bmatrix} v_{1}^{T} \\ v_{k}^{T} \end{bmatrix} w = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$.

Example 2. Suppose we want to find a vector \mathbf{w} that is orthogonal to $\mathbf{v}_1 = (1, 1, 1)^T$ and $\mathbf{v}_2 = (2, 1, -1)^T$.

MATH 4242-Week 7-1

§ The Triangle Inequality

Let V be an inner product space. Then the following **Triangle Inequality** holds:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$
 for all $\mathbf{v}, \mathbf{w} \in V$.

$$[Proof:]$$

$$||V+w||^{2} = \langle U+w, V+w \rangle$$

$$= \langle U, U \rangle + 2 \langle U, w \rangle + \langle w, w \rangle,$$

$$= ||V||^{2} + 2 \langle U, w \rangle + ||w||^{2} \quad Br \quad Canchr-$$

$$\leq ||V||^{2} + 2 ||U||||w|| + ||w||^{2} \quad SchwarZ$$

$$= (||V|| + ||w||)^{2} \quad regulit,$$

$$T(a+b)^{1} = a^{2} + 2ab + b^{2} \quad J$$

$$Then \quad ||V+w|| \leq ||U|| + ||w||.$$

* The equality holds in the triangle inequality iff $\mathbf{x} = c\mathbf{w}$ and $c \ge 0$.

3.3 Norms

Recall some properties satisfied by the norm $\|\mathbf{v}\|$ on an inner product space, where $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$, (m duced by the mner product) $\|c\mathbf{v}\| = |c|\|\mathbf{v}\| \begin{pmatrix} ||c\mathbf{v}||^2 = \langle c\mathbf{v}, c\mathbf{v} \rangle \\ = c^2 \langle \mathbf{v}, \mathbf{v} \rangle \\ = c^2 ||\mathbf{v}||^2 \\ \text{Then } ||c\mathbf{v}|| = |c|||\mathbf{v}||. \text{ for } \|\mathbf{v}\| \\ \text{Then } \|c\mathbf{v}\| = |c|||\mathbf{v}||. \text{ for } \|\mathbf{v}\| \\ \text{Then } \|\mathbf{v}\| = \|\mathbf{v}\| \\ \text{Then } \|\mathbf{v}\| = \|\mathbf{v}\| \\ \text{Then } \|\mathbf{v}\| = \|\mathbf{v}\| \\ \text{Then } \|\mathbf{v}\| \\ \text{Then } \|\mathbf{v}\| = \|\mathbf{v}\| \\ \text{Then } \|\mathbf{v}\| \\ \text{Then }$ (1)(2) $\|\mathbf{v}\| \ge 0$, and $\|\mathbf{v}\| = 0$ iff $\mathbf{v} = 0$.

(3) the triangle inequality:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$

There are other natural measures of the "size" of a vector that satisfy these same three conditions, but that cannot be defined in terms of an inner product.

For example,

(1) on \mathbb{R}^n we can measure the size of a vector $\mathbf{v} = (v_1, \ldots, v_n)$ by the sum of absolute values of its entries:

$$\sum_{i=1}^{n} |v_i| \qquad (sat is fies (1)-(3), will deck it later)$$

(2) On $C^0([a, b])$, we can measure the size of a continuous function f by the integral of its absolute value:

$$\int_{a}^{b} |f(x)| dx \qquad \left(\begin{array}{cc} \text{satisfies (1]-13), will} \\ \text{Check it later} \end{array} \right)$$

Neither of these quantities can be defined in terms of an inner product; but they are still useful notions of the "size of vectors".

MATH 4242-Week 7-1

Definition: A norm on a vector space V assigns a non-negative real number $||\mathbf{v}||$ to each vector $\mathbf{v} \in V$, such that for every \mathbf{v} , $\mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:

- (1) Positivity: $\|\mathbf{v}\| \ge 0$; $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$.
- (2) Homogeneity: $||c\mathbf{v}|| = |c|||\mathbf{v}||.$
- (3) Triangle inequality: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.

Remark: We checked that when 'a norm is induced from an inner product, these three conditions are satisfied automatically". But in general, a norm need <u>not</u> arise from an inner product on V.

1. p norm on \mathbb{R}^n . We've already seen several on \mathbb{R}^n and $C^0([a, b])$. **Example.** We have seen that $\|\mathbf{x}\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$ is the norm induced from the dot product on \mathbb{R}^n .

Example. $\|\mathbf{x}\| = \sum_{i=1}^{n} |x_i|$. Let's check the three conditions to make sure this is a valid <u>norm</u>.

(1)
$$||x|| \ge 0$$
; $||x|| = 0$ implies $|x_1| = 0$, $i=1,...,N$.
implies $x = 0$, and vice versa.
(2) $||cx|| = \sum_{i=1}^{n} |cx_i| = |c| \left(\sum_{i=1}^{n} |x_i| \right) = |c| ||x||$.
(3) $||x+y|| = \sum_{i=1}^{n} |X_i + y_i| \le \sum_{i=1}^{n} |x_i| + |y_i| \le \left(\sum_{i=1}^{n} |x_{i}| \right) + \left(\sum_{i=1}^{n} |y_i| \right)$
Thus $= 1|x|| + ||y||$
 $||x|| = \sum_{i=1}^{n} |X_i| defines a norm on IR^{M} .$