Lecture 18: Quick review from previous lecture

- Triangle Inequality holds:

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V
$$

- Definition: A norm on a vector space V assigns a non-negative real number $\|\mathbf{v}\|$ to each vector $\mathbf{v} \in V$, such that for every $\mathbf{v}, \mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:
(1) Positivity: $\|\mathbf{v}\| \geq 0 ;\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=0$.
(2) Homogeneity: $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.
(3) Triangle inequality: $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.
- We have saw the following norm on \mathbb{R}^{n} :
- (2 norm) $\|\mathbf{x}\|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ is the norm induced from the dot product on \mathbb{R}^{n}.
- (1 norm) $\|\mathbf{x}\|=\sum_{i=1}^{n}\left|x_{i}\right|$

Today we will discuss Norms.

Jesse(TA): No office hours on March 17th (Tues.) and March 19th. Instead, March 24 (Tues.) and March 26 (Thur.) from 8:05 am to $\underline{12: 05 \mathrm{pm}}$

- Midterm 1 solutions are on Canvas now.

There is a generalization of these norms:
If $p \geq 1$, we define:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

This is often called the p norm.

Example. (1) Compute the 3 norm of $\mathbf{x}=(2,-1,3)^{T}$:

$$
\|x\|_{3}=\left(2^{3}+1-11^{3}+3^{3}\right)^{1 / 3}=(8+1+27)^{1 / 3}=(36)^{1 / 3}
$$

(2) Compute the p norm of $\mathbf{x}=(1, \ldots, 1)^{T}$ in \mathbb{R}^{n} :

$$
\|x\|_{p}=\left(\sum_{n \text { terms }}^{1^{p}+\ldots+1^{p}}\right)^{1 / p}=n^{1 / p} .
$$

2. L^{p} norm on $C^{0}[a, b]$.

We define the $\stackrel{L^{p}}{p}$ norms on $C^{0}([a, b])$, for $p \geq 1$:

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}
$$

Check the three conditions to make sure this is a norm:
(1) Positivity: $\quad\|f\|_{p}=0 \Leftrightarrow f=0$.
(2) Homogeneity $:\|c f\|_{p}=|c|\|f\|_{p}$
(3) triangular inequality is tricky, we mill skip it,

Example. Compute the $3 / 2$ norm of $f(x)=x^{2}$ on $[0,1]$.

$$
\begin{aligned}
&\|f\|_{3 / 2}=\left(\int_{0}^{1}|f|^{3 / 2} d x\right)^{2 / 3}=\left(\int_{0}^{1}|x|^{3} d x\right)^{2 / 3} \\
&=\left(\int_{0}^{1} x^{3} d x\right)^{2 / 3} \\
&=\left(\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right)^{2 / 3} \\
&=\left(\frac{1}{4}\right)^{2 / 3} \\
&={ }_{\text {Sprixira } 2020}^{-4 / 3}
\end{aligned}
$$

3. $p=\infty$.
when $p=\infty$, we define ∞ norm on \mathbb{R}^{n} by:

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Example. If $\mathbf{x}=(1,-5,3)^{T}$, then $\|\mathbf{x}\|_{\infty}=5$.

Similarly,
when $p=\infty$, on $C^{0}([a, b])$ we define

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

Example. If $f(x)=-x^{3}$, then on $[-1,1],\|f\|_{\infty}=\max _{x \in[-1,\rceil]}|f|=\max _{x \in[-1]}\left|-x^{3}\right|$

$$
\begin{aligned}
& =\max _{x \in f-1]}\left|x^{3}\right| \\
& =1 \cdot \nexists f
\end{aligned}
$$

3. Distance. Every norms defines a distance between vector space elements, that is,

$$
d(\mathbf{v}, \mathbf{w})=\|\mathbf{v}-\mathbf{w}\| .
$$

It satisfies

1. Symmetry: $d(\mathbf{v}, \mathbf{w})=d(\mathbf{w}, \mathbf{v})$
2. Positivity: $d(\mathbf{v}, \mathbf{w})=0$ ff $\mathbf{v}=\mathbf{w}$.
3. Triangle inequality: $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{z})+d(\mathbf{z}, \mathbf{w})$

4. Matrix Norms.

If $\|\mathbf{v}\|$ is any norm on \mathbb{R}^{n}, it induces a natural norm on $\mathcal{M}_{n \times n}$. the vector space of n-by- n matrices.

The matrix norm (with respect to the norm $\|\cdot\|$ on \mathbb{R}^{n}) is defined as follows. If A is any n-by- n matrix, then

$$
\|A\|=\max \{\|A \mathbf{u}\|:\|\mathbf{u}\|=1\}
$$

Proof. To show it is a norm, see pages 153-154 in the book for the proof.

* In other words, $\|A\|$ is the maximum amount that A can change the norm of a unit vector \mathbf{u} (one with $\|\mathbf{u}\|=1$) when we apply A to \mathbf{u}.
* The book calls $\|A\|$ the natural matrix norm associated to the vector norm $\|\mathbf{v}\|$. It is also often called the operator norm of A.

Fact:

(1) $\|A \mathbf{v}\| \leq\|A\|\|\mathbf{v}\|$, for all $n \times n$ matrices $A, \mathbf{v} \in \mathbb{R}^{n}$,
(2) $\|A B\| \leq\|A\|\|B\|$, for all $n \times n$ matrices A and B.
[To see these:]

$$
\left\|\frac{u}{\|u\|}\right\|=\frac{1}{\|u\|}\|u\|=1 .
$$

(1) $u \neq 0$, unit vector $\omega=\frac{u}{\|u\|},\|w\|=1$.
$\|A w\|=\left\|A \frac{u}{\|u\|}\right\| \leq\|A\| \Rightarrow \frac{\|A u\|}{\|u\|} \leq\|A\|$ $\Rightarrow \quad\|A u\| \leq\|A\|\|u\|$.
(2) $\|u\|=1$.
$\|A B u\|=\|A(B u)\| \stackrel{(1)}{\leq}\|A\|\|B u\| \stackrel{(1)}{\leq}\|A\|\|B\|\|u\|=\|A\|\|B\|$.
$A B \| \max \{\|A B u\| ;\|u\|=1\} \leq(\|A\|\|B\|$
The $2^{\text {nd }}$ inequality implies that
Fact: If A a square matrix, then

$$
\left\|A^{k}\right\| \leq\|A\|^{k}
$$

3.4 Positive Definite Matrices

We have seen that the following inner products on \mathbb{R}^{n} :

- standard inner product $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}=\left(x_{1}, \ldots, x_{n}\right)\left(\begin{array}{lll}1 & & 0 \\ 0 & & 1\end{array}\right)\left(\begin{array}{l}y_{1} \\ i \\ y_{n}\end{array}\right)$
- For $c_{1}>0, \cdots, c_{n}>0, \quad=x^{\top} I_{n} y$.

$$
\langle\mathbf{x}, \mathbf{y}\rangle=c_{1} x_{1} y_{1}+\ldots+c_{n} x_{n} y_{n}=X^{\top} D y, \quad D=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)
$$

- For nonsingular matrix A,

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T}\left(A^{T} A\right) \mathbf{y}
$$

is also an inner product
They all have been of the following form:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} K \mathbf{y}
$$

for some symmetric matrix K.

Q: Are there any other types of inner products on \mathbb{R}^{n} ?
Ans: In fact, all inner products on \mathbb{R}^{n} are of the form $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} K \mathbf{y}$, for some symmetric matrix K.

However, it is not true that any symmetric matrix K defines an inner product! Only a special type of matrix K can do this.
Recall : tuner product.
(1) Bilinearity
(2) St mmetry: $\langle x, y\rangle=\langle y, x\rangle$
(3) Posinity: $\langle x, x\rangle \geq 0 ; \quad\langle x, x\rangle=0$

