Lecture 18: Quick review from previous lecture

• Triangle Inequality holds:

 $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

- **Definition:** A norm on a vector space V assigns a non-negative real number $||\mathbf{v}||$ to each vector $\mathbf{v} \in V$, such that for every \mathbf{v} , $\mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:
 - (1) Positivity: $\|\mathbf{v}\| \ge 0$; $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$.
 - (2) Homogeneity: $||c\mathbf{v}|| = |c|||\mathbf{v}||$.
 - (3) Triangle inequality: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- We have saw the following norm on \mathbb{R}^n :
 - (2 norm) $\|\mathbf{x}\| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$ is the norm induced from the dot product on \mathbb{R}^n .

$$-(1 \text{ norm}) \|\mathbf{x}\| = \sum_{i=1}^{n} |x_i|$$

Today we will discuss Norms.

Jesse(TA): No office hours on March 17th (Tues.) and March 19th. Instead, March 24 (Tues.) and March 26 (Thur.) from 8:05 am to <u>12:05 pm</u>

• Midterm 1 solutions are on Canvas now.

There is a generalization of these norms:

If $p \ge 1$, we define:

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

This is often called the p **norm**.

Example. (1) Compute the 3 norm of $\mathbf{x} = (2, -1, 3)^T$:

$$\|\chi\|_{3} = \left(2^{3} + |-1|^{3} + 3^{3}\right)^{1/3} = \left(8 + |+27|\right)^{1/3} = (36)^{1/3}$$

(2) Compute the p norm of $\mathbf{x} = (1, \dots, 1)^T$ in \mathbb{R}^n :

$$\|X\|_{p} = \left(\begin{array}{ccc} |P + \dots + |P \rangle \right)'_{P} = N'_{P}.$$

$$n \text{ terms}$$

2. L^p norm on $C^0[a, b]$. We define the p norms on $C^0([a, b])$, for $p \ge 1$: $||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$

Check the three conditions to make sure this is a norm:

Example. Compute the 3/2 norm of $f(x) = x^2$ on [0, 1]. $\|\|f\|_{B_{2}} = \left(\int_{0}^{1} ||f||^{3/2} dx\right)^{2/3} = \left(\int_{0}^{1} ||x||^{3} dx\right)^{2/3}$ $= \left(\int_{a}^{b} \times^{3} dx\right)^{2/3}.$ $= \left(\begin{array}{c} \times 4 \\ - 4 \\ - 4 \end{array} \right)^{2/3} = \left(\begin{array}{c} 1 \\ - 4 \end{array} \right)^{2/3}$ $= \frac{-4/3}{\text{Sprize 2020}}$

3. $p = \infty$.

when $p = \infty$, we define ∞ norm on \mathbb{R}^n by:

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Example. If
$$\mathbf{x} = (1, -5, 3)^T$$
, then $\|\mathbf{x}\|_{\infty} = 5$.

Similarly,

when $p = \infty$, on $C^0([a, b])$ we define $\|f\|_{\infty} = \max_{x \in [a, b]} |f(x)|$

Example. If
$$f(x) = -x^3$$
, then on $[-1, 1]$, $||f||_{\infty} = \max_{\substack{x \in [4, 1] \\ x \in [4, 1]}} |f| = \max_{\substack{x \in [4, 1] \\ x \in [4, 1]}} |f| = \max_{\substack{x \in [4, 1] \\ x \in [4, 1]}} |f|$

3. Distance. Every norms defines a distance between vector space elements, that is,

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|.$$

It satisfies

- 1. Symmetry: $d(\mathbf{v}, \mathbf{w}) = d(\mathbf{w}, \mathbf{v})$
- 2. Positivity: $d(\mathbf{v}, \mathbf{w}) = 0$ iff $\mathbf{v} = \mathbf{w}$.
- 3. Triangle inequality: $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{z}) + d(\mathbf{z}, \mathbf{w})$

4. Matrix Norms.

If $\|\mathbf{v}\|$ is any norm on \mathbb{R}^n , it induces a natural norm on $\mathcal{M}_{n \times n}$, the vector space of *n*-by-*n* matrices.

The **matrix norm** (with respect to the norm $\|\cdot\|$ on \mathbb{R}^n) is defined as follows. If A is any n-by-n matrix, then

$$||A|| = \max\{||A\mathbf{u}|| : ||\mathbf{u}|| = 1\}$$

Proof. To show it is a norm, see pages 153–154 in the book for the proof.

* In other words, ||A|| is the maximum amount that A can change the norm of a unit vector \mathbf{u} (one with $\|\mathbf{u}\| = 1$) when we apply A to \mathbf{u} .

* The book calls ||A|| the **natural matrix norm** associated to the vector norm $\|\mathbf{v}\|$. It is also often called the **operator norm** of A.

Fact:
(1)
$$||A\mathbf{v}|| \le ||A|| ||\mathbf{v}||$$
, for all $n \times n$ matrices A , $\mathbf{v} \in \mathbb{R}^n$,
(2) $||AB|| \le ||A|| ||B||$, for all $n \times n$ matrices A and B .
[To see these:]
(1) $u \ne 0$, $unit$ vector $w = \frac{u}{||u||}$, $||w|| = 1$,
 $||Aw|| = ||A| \frac{u}{||u||} || \le ||A|| = 1$, $||w|| = 1$,
 $||Aw|| = ||A| \frac{u}{||u||} || \le ||A|| = 1$, $||A||| = 1$,
 $||A|| = ||A| ||A|| = ||A| ||A|| = 1$, $||A|| = 1$, $||A|| = 1$,
 $||A|| = ||A| ||B|| \le ||A|| ||B|| \le ||A|| ||B|| ||B|| = ||A||||B||$,
 $||A|| = ||A|||B|| \le ||A|| ||B|| \le ||A|| ||B|| ||B|| = ||A|||B||$,
 $||A|| = ||A|||B|| = 1$,
 $||A|| = ||A|| = 1$,
 $||A|| = ||A|||B||$,
 $||A|| = ||A|||B|| = 1$,
 $||A|| = ||A|| = 1$,
 $||A|| = ||A|||B||$,
 $||A|| = ||A|||B|| = 1$,
 $||A|| = ||A|||B||$,
 $||A|| = ||A|||B|||A|||B||$,
 $||A|| = ||A|||B|||A|||A|||B|||A|||B|||A|||$

$$|A^k|| \le ||A||^k.$$

Recall Mmxn=(mxn matrix)

3.4 Positive Definite Matrices

We have seen that the following inner products on \mathbb{R}^n :

$$\langle \mathbf{x}, \mathbf{y} \rangle = c_1 x_1 y_1 + \ldots + c_n x_n y_n$$

= $\mathbf{x}^{\mathsf{T}} \mathsf{D} \mathbf{y} = \mathsf{D} = \mathsf{d} \mathsf{T} \mathsf{a} \mathsf{g} (c_1, \ldots, c_n)$

• For nonsingular matrix A,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T (A^T A) \mathbf{y}$$

is also an inner product

They all have been of the following form:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T K \mathbf{y}$$

for some symmetric matrix K.

Q: Are there any other types of inner products on \mathbb{R}^n ?

Ans: In fact, all inner products on \mathbb{R}^n are of the form $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T K \mathbf{y}$, for some symmetric matrix K.

However, it is not true that any symmetric matrix K defines an inner product! Only a special type of matrix K can do this.

Recall :Mner product.I)BilmearityI)BilmearityI)Symmetry:
$$\langle x, y \rangle = \langle y, x \rangle$$
I)Positivity: $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0$ I)Positivity: $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0$

Spring 2020