Lecture 19: Quick review from previous lecture

- If $p \geq 1$, we define:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

This is often called the p norm.

- We define the L^{p} norms on $C^{0}([a, b])$, for $p \geq 1$:

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}
$$

- If A is any n-by- n matrix, then

$$
\|A\|=\max \{\|A \mathbf{u}\|:\|\mathbf{u}\|=1\}
$$

Today we will discuss Positive definite matrix.

Jesse(TA): No office hours on March 17th (Tues.) and March 19th. Instead, March 24 (Tues.) and March 26 (Thur.) from 8:05 am to 12:05 pm

- Quiz 4 (covers sec. 2.5, 3.1, 3.2) will take place in the beginning of the class on Friday 3/20
3.4-3.5 Positive Definite Matrices

Definition: An $n \times n$ matrix K is called positive definite if it is symmetric, $K^{T}=K$, and satisfies the positivity condition

$$
\text { (2) } \mathbf{x}^{T} K \mathbf{x}>0 \quad \text { for all } \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n} \text {. }
$$

We write $K>0$ to mean that K is positive definite matrix.

Fact: Every inner product on \mathbb{R}^{n} is given by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} K \mathbf{y} \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

where K is a symmetric, positive definite $n \times n$ matrix.
[To see it is an inner product:]
(1) Bilinearity: Exercise
(3) Symmetry: $\langle x, y\rangle=\langle y, x\rangle$.

$$
\begin{align*}
\langle x, y\rangle=x^{\top} K y & =\left(x^{\top} K y\right)^{\top} \\
& =y^{\top} K^{\top} x \\
& =y^{\top} K x=\langle y, x\rangle \tag{7}
\end{align*}
$$

(3) Positivity:

$$
\begin{aligned}
& \langle x, x\rangle=x^{\top} K x>0 \text { since } K \text { is poritile } \\
& \langle x, x\rangle=0 \Longleftrightarrow x^{\top} K x=0 \\
& \Longleftrightarrow x=0 \text { definite } \\
& \langle x K \text { is positive } \\
& \text { de finite } \\
& \text { Spring } 2020
\end{aligned}
$$

Note: for a matrix A, the function

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}
$$

is called a quadratic form. "quadratic form is called "positive definite"
Warning: positive definite matrices may have negative entries, while entries with all all positive entries may not always be positive definite.
Example.

$$
K=\left(\begin{array}{cc}
4 & -2 \\
-2 & 3
\end{array}\right)
$$

is positive definite, but it has negative entries.

$$
\begin{aligned}
q(x)=x^{\top} K x & =\left(x_{1} x_{2}\right)\left(\begin{array}{cc}
4 & -2 \\
-2 & (3)
\end{array}\binom{x_{1}}{x_{2}}\right. \\
& =\left(4 x_{1}^{2}-4 x_{1} x_{2}+(3) x_{2}^{2}\right. \\
& =\left(4 x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}\right)+3 x_{2}^{2}-x_{2}^{2} \\
& =\left(2 x_{1}-x_{2}\right)^{2}+2 x_{2}^{2} \geq 0
\end{aligned}
$$

Example. $q(x)=0 \Leftrightarrow 2 x_{1}=x_{2}, x_{2}=0 \Leftrightarrow x_{1}=x_{2}=0$
is Not positive definite

$$
\Leftrightarrow \quad x=(0,0)^{\top}
$$

$$
\text { So } K>0
$$

$$
g(x)=x^{\top} A x=x_{1}^{2}+6 x_{2} x_{1}+2 x_{2}^{2}
$$

Taking $x_{0}=(1,-1)^{\top}, q\left(x_{0}\right)=-3<0$ $50 \quad \theta$ is NOT positive

How can we tell if a matrix K is positive definite? We obviously can't evaluate $\mathbf{x}^{T} K \mathbf{x}$ for all vectors \mathbf{x} !
\S The positive definite 2×2 matrices.
Take any symmetric 2-by-2 matrix A :

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \\
q(x)=\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x_{1}}{x_{2}}=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
\end{gathered}
$$

(1) $a \leq 0$, then A is NOI positive definite.

$$
F A=\left(\begin{array}{cc}
-3 & b \\
b & c
\end{array}\right) . \quad e_{1}=\binom{1}{0} \quad, \quad q\left(e_{1}\right)=e_{1}^{\top} A e_{1}=-3<0
$$

Thus, we suppose $a>0$.
(2) Complete the square:

$$
q(x)=\left(\sqrt{a} x_{1}+\frac{b}{\sqrt{a}} x_{2}\right)^{2}+\left(c-\frac{b^{2}}{a}\right) x_{2}^{2} .
$$

Fact: $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is positive definite if and only if

$$
a>0 \text { and } a c-b^{2}>0
$$

\S The positive definite $n \times n$ matrices.
Is there a simple characterization for positive definite matrices of any size?
Recall: Any regular symmetric matrix A can be factored in the form
$A \xrightarrow{\text { Gaussian }} U=\left(\begin{array}{lll}u_{11} & \\ & \ddots & \\ 0 & & u_{n n}\end{array}\right), u_{11} \neq 0, \ldots, u_{n n} \neq 0$
where L is lower unitriangular and D is diagonal.
(*This factorization is computed via Gaussian elimination.)

1. 2×2 symmetric matrix Suppose $A=\left(\begin{array}{cc}a & b \\ b & c\end{array}\right)$.

$$
\begin{aligned}
& a>0, \text { By Gaussian -Elimination, } \\
& A \xrightarrow{(2)-\frac{b}{a}(1)} \\
& \begin{aligned}
A & =L U \\
A & \left(\begin{array}{cc}
a & b \\
0 & c-\frac{b^{2}}{a}
\end{array}\right), \quad L=\left(\begin{array}{ll}
1 & 0 \\
\frac{b}{a} & 1
\end{array}\right) . \\
& =\left(\begin{array}{ll}
1 & 0 \\
\frac{b}{a} & 1
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & c-\frac{b^{2}}{a}
\end{array}\right) \\
& =L\left(\begin{array}{ll}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right)
\end{aligned}
\end{aligned}
$$

We have seen that
A is positive definite $C=a>0, c-\frac{b^{2}}{a}>0$.
\Longleftrightarrow all diagonal entries of D are positive.
2. Any size symmetric matrix

It turns out that this same criterion characterizes positive definite matrices of any size.

Fact: An n-by- n matrix A is positive definite if and only if it is:
(a) symmetric;
(b) regular, hence $A=L D L^{T}$; and
(c) D has all positive diagonal entries, ie. A has positive pivots.

Fact: If a matrix is positive definite, then it is nonsingular.

Example. Suppose A is the symmetric matrix

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right)
$$

Gaussian Elimination.

Example. Suppose A is the symmetric matrix

$$
\left.A \xrightarrow[(3)-2(1)]{(2)+(1)}\left(\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 3 & -4 \\
2 & -4 & 5
\end{array}\right) \quad \underset{1}{1} \begin{array}{rrr}
(1 & 2 \\
0 & 2 & -2 \\
0 & -2 & 1
\end{array}\right) \xrightarrow{(3)+(2)}\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -2 \\
0 & 0 & -1
\end{array}\right)
$$

So A is NNT positive definite.

Example. Suppose A is the symmetric matrix

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 2 & -3 \\
2 & -3 & 7
\end{array}\right) \\
& \left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & -1 & 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Thus } \quad A \\
& L^{\top}
\end{aligned}
$$

Definition: If a matrix A satisfies $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all vectors \mathbf{x}, it is called positive semidefinite.

Remark: Every positive definite matrix is also positive semidefinite; but the converse is not true, since a positive semidefinite matrix A might have $\mathbf{x}^{T} A \mathbf{x}=0$ for $\mathbf{x} \neq \mathbf{0}$.

Example. The matrix $A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ is positive semidefinite, but not posi-

Thus. A is positive semidefinite.

$$
q(x)=0 \quad \Longleftrightarrow \quad x_{1}=x_{2}
$$

So A is NOT positile definite.

Definitions:

- a matrix A is negative definite if $\mathbf{x}^{T} A \mathbf{x}<0$ for all $\mathbf{x} \neq \mathbf{0}$.
- Similarly, a matrix A is negative semidefinite if $\mathbf{x}^{T} A \mathbf{x} \leq 0$ for all \mathbf{x}.
- If a matrix is neither positive or negative semidefinite, it is called indefinite. This means that there are vectors \mathbf{x} and \mathbf{y} with $\mathbf{x}^{T} A \mathbf{x}>0$ and $\mathbf{y}^{T} A \mathbf{y}<0$.
*Only "positive definite" matrices define inner products, via $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A \mathbf{y}$.

